Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{\frac{2}{5}}{4}}{\frac{\frac{5}{25}}{50}}=\frac{\frac{2}{5}:4}{\frac{5}{25}:50}=\frac{\frac{2}{5}.\frac{1}{4}}{\frac{5}{25}.\frac{1}{50}}=\frac{\left(\frac{1}{10}\right)}{\left(\frac{1}{250}\right)}=\frac{1}{10}:\frac{1}{250}=\frac{250}{10}=25\)
\(\frac{\frac{\frac{2}{5}}{4}}{\frac{5}{\frac{25}{50}}}=\frac{\frac{2}{5}:4}{5:\frac{25}{50}}=\frac{\frac{2}{5}.\frac{1}{4}}{5.\frac{50}{25}}=\frac{\left(\frac{1}{10}\right)}{10}=\frac{1}{10}:10=\frac{1}{10}.\frac{1}{10}=\frac{1}{100}\)
Chú ý: dấu gạch ngang viết dài hơn để phân biệt tử số và mẫu số của phân số
\(\frac{5}{7}\times\frac{1}{3}-\frac{5}{7}\times\frac{1}{4}-\frac{5}{7}\times\frac{1}{2}\)
\(=\frac{5}{7}\times\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right)\)
\(=\frac{5}{7}\times\left(\frac{4}{12}-\frac{3}{12}-\frac{6}{12}\right)\)
\(=\frac{5}{7}\times\left(\frac{4-3-6}{12}\right)\)
\(=\frac{5}{7}\times\frac{-5}{12}\)
\(=\frac{5\times\left(-5\right)}{7\times12}\)
\(=\frac{-25}{84}\)
\(\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{2}\)
= \(\frac{5}{7}.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{2}\right).1\)
\(=\frac{5}{7}.\frac{-5}{12}\)
\(=-\frac{25}{84}\)
\(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)
\(\frac{2}{3}x\) = \(\frac{1}{10}+\frac{1}{2}\)
\(\frac{2}{3}x\) = \(\frac{3}{5}\)
\(x\) = \(\frac{3}{5}:\frac{2}{3}\)
\(x\) = \(\frac{9}{10}\)
8/5:(8/5.5/4) / 16/25-1/25 + 1:4/7 / (50/9-9/4).36/17) + 0,6.0,5:2/5
= 8/5:8/5:5/4 / 3/5 + 7/4 / 50/9.36/17-9/4.36/17 + 0,3.5/2
= 4/5:3/5 + 7/4 / 200/17-81/17 + 3/10.5/2
= 4/5.5/3 + 7/4 / 119/17 + 3/4
= 4/3 + 7/4 : 7 + 3/4
= 4/3 + 4 + 3/4
= 16/12 + 48/12 + 9/12
= 73/12
☆★☆★☆
Bài 1:
\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
= \(\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\right]\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
=\(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{26}\):\(\left(\frac{1}{25}+\frac{1}{26}+....+\frac{1}{50}\right)\)
......????
nhầm
\(\frac{\frac{\frac{2}{5}}{4}}{\frac{\frac{5}{25}}{50}}=\frac{\frac{\frac{2}{5}}{4}}{10}=\frac{\frac{2}{25}}{2}=\frac{4}{25}\)