\(\frac{a+b+c}{3\sqrt{3}}\) ≥ \(\frac{ab+bc+ca}{\sqrt{a^2+ab+b^2}+\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Trả lời hộ mình đi

15 tháng 12 2017

Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)

\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)

\(\Leftrightarrow ab+bc+ca\le3\)

\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Đến đây dễ rồi để YẾN tự làm

NV
5 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến

20 tháng 1 2019

Theo đề ra ta có :

 \(ab+bc+ca-\frac{\left(a+b+c\right)^2}{3}=-\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{6}\right]\le0\)

và : \(ab+bc+ca\le3\)

Suy ra : \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức AM - GM ta được :

\(\frac{ab}{\sqrt{c^2+3}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{b+c}\right)\)

Thiết lập 2 đẳng thức tương tự, cộng về theo về, ta có :

\(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left[\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\left(\frac{bc}{a+b}+\frac{ca}{a+b}\right)+\left(\frac{ca}{b+c}+\frac{ab}{b+c}\right)\right]\)

và : \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}\)

Mà : \(a+b+c=3\)( theo đề bài ) , suy ra đpcm

20 tháng 1 2019

ở dòng thứ 3 qua dòng thứ 4 bạn sai nhé. đáng lẽ là \(\ge\)

NV
17 tháng 7 2020

Để dễ nhìn, đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\)

\(VT=\frac{xy}{z^2+2xy}+\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}\)

\(2VT=\frac{2xy}{z^2+2xy}+\frac{2yz}{x^2+2yz}+\frac{2zx}{y^2+2xz}=1-\frac{z^2}{z^2+2xy}+1-\frac{x^2}{x^2+2yz}+1-\frac{y^2}{y^2+2xz}\)

\(2VT=3-\left(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\right)\)

\(2VT\le3-\frac{\left(x+y+z\right)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=3-\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)

\(\Rightarrow VT\le1\)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

NV
9 tháng 3 2020

1. ĐKXĐ: ...

Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t\ge\sqrt{7}\)

\(\Rightarrow t^2=8x+9+4\sqrt{4x^2+9x+2}\)

\(\Rightarrow2x+\sqrt{4x^2+9x+2}=\frac{t^2-9}{4}\)

Phương trình trở thành:

\(\frac{t^2-9}{4}+3=t\)

\(\Leftrightarrow t^2-4t+3=0\Rightarrow\left[{}\begin{matrix}t=1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow4\sqrt{4x^2+9x+2}=t^2-\left(8x+9\right)=-8x\) (\(x\le0\))

\(\Leftrightarrow\sqrt{4x^2+9x+2}=-2x\)

\(\Leftrightarrow4x^2+9x+2=4x^2\Rightarrow x=-\frac{2}{9}\)

NV
9 tháng 3 2020

Bài 2:

Ta có: \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\Rightarrow3\ge a+b+c\)

Do \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=\sqrt{a}+\sqrt{b}+\sqrt{c}\)

Nên BĐT sẽ được chứng minh nếu ta chỉ ra rằng:

\(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)

Thật vậy, ta có:

\(\sqrt{a}+\sqrt{a}+a^2\ge3a\) ; \(\sqrt{b}+\sqrt{b}+b^2\ge3b\) ; \(\sqrt{c}+\sqrt{c}+c^2\ge3c\)

\(\Rightarrow2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+a^2+b^2+c^2\ge3\left(a+b+c\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+a^2+b^2+c^2\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
3 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

2 tháng 5 2020

\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\left(1\right)\)

Ta có ab+bc+ca=abc nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

\(\left(1\right)\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}+\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}+\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\ge\sqrt{3}\)

Trong mặt phẳng với hệ tọa độ Oxy, với các Vecto

\(\overrightarrow{u}=\left(\frac{1}{a};\frac{\sqrt{2}}{b}\right);\left|\overrightarrow{u}\right|=\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}\)

\(\overrightarrow{v}=\left(\frac{1}{b};\frac{\sqrt{2}}{c}\right)\Rightarrow\left|\overrightarrow{v}\right|=\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}\)

\(\overrightarrow{w}=\left(\frac{1}{c};\frac{\sqrt{2}}{a}\right)\Rightarrow\left|\overrightarrow{w}\right|=\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\)

Ta có \(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c};2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\left(1;\sqrt{2}\right)\)

=> \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|=\sqrt{1+2}=\sqrt{3}\)

Mặt khác \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\ge\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge\sqrt{3}\)

Dấu "=" xảy ra <=> a=b=c