Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= \(\frac{2}{3}+\frac{3}{2}.\frac{6}{5}-\frac{1}{5}\)
=\(\frac{13}{6}.1\)=\(\frac{13}{6}\)
b)= \(\frac{1}{9}.\frac{27}{2}-\frac{1}{5}:\frac{5}{6}\)
=\(\frac{3}{2}-\frac{6}{25}=\frac{63}{50}\)
Câu 1 : \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)\(\Rightarrow\)\(\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{2y}{5}=\frac{1}{4}.\frac{4z}{7}\)\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\) \(\Rightarrow\)\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)
\(\frac{3x}{24}=1\Rightarrow3x=24\Rightarrow x=8\)
\(\frac{5y}{50}=1\Rightarrow5y=50\Rightarrow y=10\)
\(\frac{7z}{49}=1\Rightarrow7z=49\Rightarrow z=7\)
Vậy x,y,z lần lượt là 8,10,7
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
a) \(\frac{15}{12}+\frac{5}{13}-\frac{3}{12}-\frac{18}{13}=\left(\frac{15}{12}-\frac{3}{12}\right)+\left(\frac{5}{13}-\frac{18}{13}\right)\)
\(=1+\left(-1\right)\)
\(=0\)
b) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}=\left(\frac{11}{24}+\frac{13}{24}\right)+\left(-\frac{5}{41}-\frac{36}{41}\right)+0,5\)
\(=1+\left(-1\right)+0,5\)
\(=0,5\)
_Học tốt nha_
a, \(\frac{15}{12}\)+ \(\frac{5}{13}\)- \(\frac{3}{12}\)-\(\frac{18}{13}\)
= \(\frac{5}{4}\)+ \(\frac{5}{13}\) - \(\frac{1}{4}\) - \(\frac{18}{13}\)
= \(\left(\frac{5}{4}-\frac{1}{4}\right)\)+ \(\left(\frac{5}{13}-\frac{18}{13}\right)\)
= 1 - 1 = 0
b, \(\frac{11}{24}\)- \(\frac{5}{41}\)+ \(\frac{13}{24}\)+ 0,5 - \(\frac{36}{41}\)
= \(\left(\frac{11}{24}+\frac{13}{24}\right)\)- \(\left(\frac{5}{41}+\frac{36}{41}\right)\)+ 0,5
= 1 - 1 + 0,5 = 0,5
c, \(\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)
=\(\left(-\frac{3}{4}+\frac{2}{3}\right).\frac{11}{5}+\left(-\frac{1}{4}+\frac{1}{3}\right).\frac{5}{11}\)
= \(\frac{11}{5}.\left(-\frac{3}{4}+\frac{2}{3}-\frac{1}{4}+\frac{1}{3}\right)\)
= \(\frac{11}{5}.\left[\left(-\frac{3}{4}-\frac{1}{4}\right)+\left(\frac{2}{3}+\frac{1}{3}\right)\right]\)
= \(\frac{11}{5}.\left[\left(-1\right)+1\right]\)
= 0
d, \(\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)
= \(9.\left(0,75-0,25\right)-2\)
= 9. 0,5 - 2 = 2,5
e, \(\frac{13}{25}+\frac{6}{41}-\frac{38}{25}+\frac{35}{41}-\frac{1}{2}\)
= \(\left(\frac{13}{25}-\frac{38}{25}\right)+\left(\frac{6}{41}+\frac{35}{41}\right)-\frac{1}{2}\)
= -1 + 1 - \(\frac{1}{2}\)
= \(-\frac{1}{2}\)
A = 5/7.(1+9/13) − 5/7.9/13
A= 5/7.(1+9/13 - 9/13)
A = 5/7.1
A = 5/7
B = 11/24 − 5/41 + 13/24 + 0.5 − 36/41
B = (11/24 + 13/24) - (5/41 + 36/41) + 0.5
B = 1 - 1 + 0.5
B = 0.5
C = −4/13.5/17 + (−12/13).4/17 + 4/13
C = 4/13.(-5/17) + (−12/13).4/17 + 4/13
C = 4/13.(-5/17 + 1) + (−12/13).4/17
C = 4/13.(−12/17) + (−12/13).4/17
C = (4.-12)/(13.17) + (−12/13).4/17
C = 4/17.(−12/13) + (−12/13).4/17
C = 4/17.(−12/13).2
C = 96/221
D = (4/3 − 3/2)2 − 2.∣−1/9∣ + (−5/18)
D = (4/3 − 3/2)2 − 2.1/9+ (−5/18)
D = -1/62 - 2/9+ (−5/18)
D = -1/12 - ( 2/9+ (−5/18) )
D = -1/12 - ( 4/18+ (−5/18) )
D = -1/12 - (-1/18)
D = -1/12 + 1/18
D = -3/36 + 2/36
D = -1/36
E = (−3/4 + 2/3):5/11 + (−1/4 + 1/3):5/11
E = (−3/4 + 2/3 + (−1/4) + 1/3):5/11
E = ((−3/4 + (−1/4)) + (2/3 + + 1/3)):5/11
E = ( - 1 + 1):5/11
E = 0:5/11
E = 0
a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)
\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)
Từ (1) và (2) \(\Rightarrow A< B\)
Vậy \(A< B.\)
b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)
\(A=\left(0,1\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)
\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
d) \(A=102^7=102^6.102\)(1)
\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)
\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)
Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)
Vậy \(A>B.\)
f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)
\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)
Từ (1) và (2) \(\Rightarrow A>B\)
Vậy \(A>B.\)
a, ta có A=2^24=64^4
B=3^16=81^4
Vì 64^4<81^4
Vậy 2^24<3^36
b, ta có A=0,1^15
B=0,3^30=0,09^15
Vì 0,1^15< 0,09^15
Vậy 0,1^15<0,3^30
a)\(-\left(\frac{2}{5}+x\right)=\frac{2}{3}-\frac{11}{12}\)
\(-\left(\frac{2}{5}+x\right)=\frac{-1}{4}\)
\(\frac{-2}{5}-x=\frac{-1}{4}\)
\(-x=\frac{-1}{4}+\frac{2}{5}\)
\(-x=\frac{3}{20}\)
\(x=\frac{-3}{20}\)
Vậy...
b)\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}\)
\(\frac{1}{4}:x=\frac{-7}{20}\)
\(x=\frac{1}{4}:\left(\frac{-7}{20}\right)\)
\(x=\frac{-5}{7}\)
Vậy...
tk mk nhoaa bn
\(\frac{a}{3}=\frac{b-3}{4}=\frac{c+5}{11}=\frac{a+\left(b-3\right)+\left(c+5\right)}{3+4+11}=\frac{\left(a+b+c\right)+2}{18}=\frac{24+2}{18}=\frac{13}{9}\)
=> a =39/9
b =3+52/9 =79/9
c =143/9 -5 =98/9