\(\frac{a-b}{b}=\frac{3}{5}\). Tính \(\frac{a}{b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2019

\(\frac{a-b}{b}=\frac{3}{5}\Leftrightarrow\frac{a-b}{3}=\frac{b}{5}=\frac{a-b+b}{3+5}=\frac{a}{8}\left(\text{tính chất dãy tỉ số bằng nhau}\right)\Leftrightarrow\frac{b}{5}=\frac{a}{8}\Leftrightarrow\frac{a}{b}=\frac{8}{5}\)

8 tháng 1 2019

Ta có: \(\frac{a-b}{b}=\frac{a}{b}-1=\frac{3}{5}\)

\(\Rightarrow\frac{a}{b}=\frac{3}{5}+1=\frac{8}{5}\)

Vậy \(\frac{a}{b}=\frac{8}{5}\)

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

21 tháng 10 2019

Violympic toán 7Violympic toán 7

21 tháng 10 2019

a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)

=> \(\frac{a}{3}=\frac{b}{4}\)\(a.b=48.\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)

Có: \(a.b=48\)

=> \(3k.4k=48\)

=> \(12k^2=48\)

=> \(k^2=48:12\)

=> \(k^2=4\)

=> \(k=\pm2.\)

TH1: \(k=2.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)

TH2: \(k=-2.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)

Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)

Chúc bạn học tốt!

2 tháng 7 2019

a) Vì \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)nên:

\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

hay A < B (đpcm)

b) \(AB=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)

\(\Leftrightarrow AB=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7....100.101}\)

\(\Leftrightarrow AB=\frac{1}{101}\)

Vậy \(AB=\frac{1}{101}\)

2 tháng 7 2019

a, So sánh từng nhân tử của hai vế ta thấy:

\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)

Suy ra \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

Suy ra A<B

b, \(A.B=\frac{1.2.3.4.5.6...99.100}{2.3.4.5.6.7...100.101}=\frac{1}{101}\)

1 tháng 12 2019

Thay x = 3 vào \(\frac{a-x}{3}=\frac{bx-5}{5}\)

\(\Rightarrow\frac{a-3}{3}=\frac{3b-5}{5}\)\(\Rightarrow\frac{a}{3}-1=\frac{3b}{5}-1\)\(\Rightarrow\frac{a}{3}=\frac{3b}{5}\)\(\Rightarrow a=\frac{3.3b}{5}=\frac{9b}{5}\)

Thay a = 9b/5 vào \(\frac{a}{b}-\frac{b}{a}\)\(\Rightarrow\frac{\frac{9b}{5}}{b}-\frac{b}{\frac{9b}{5}}=\frac{\left(\frac{9b}{5}\right)^2-b^2}{\frac{9b}{5}.b}=\frac{\frac{81b^2}{25}-b^2}{\frac{9b^2}{5}}=b^2\left(\frac{81}{25}-1\right)\div\frac{9b^2}{5}=\frac{56b^2}{25}.\frac{5}{9b^2}=\frac{56}{45}\)

Vậy.... 

4 tháng 9 2019

Giải giúp mình nhé

Mình đang cần gấp

4 tháng 9 2019

Bài 1

\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)

\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)

\(=>\left|x+4,3\right|-2,8=0\)

\(=>\left|x+4,3\right|=0+2,8=2,8\)

\(=>x+4,3=\pm2,8\)

\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)

\(c,\left|x\right|+x=\frac{2}{3}\)

\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)

2 tháng 1 2019

A) \(A=\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)

\(A=-11.\frac{1}{12}:5+\frac{1}{3}-\frac{1}{4}:\frac{5}{11}\)

\(A=-\frac{11.\frac{1}{12}}{5}+\frac{11.\frac{1}{12}}{5}\)

\(\Rightarrow A=0\)

b) \(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)

\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(\frac{7}{2}-\frac{4}{2}\right)\)

\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-2\)

\(B=3^2.\left(\frac{3}{4}-0,25\right)-2\)

\(B=4,5-2\)

\(\Rightarrow B=2\)

2 tháng 1 2019

Lộn nha :v ở phần b) ấy, bạn sửa 4,5 - 2 = 2 thành 4,5 - 2 = 2,5 hộ mình nha

21 tháng 10 2016

\(fx\) đó bn

22 tháng 10 2016

1)Ta có:\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow\left(3x-y\right)4=3\left(x+y\right)\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Rightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

\(\Rightarrow\frac{x}{y4}=\frac{7}{36}\)