Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau ta có :"
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+..+1}\)
\(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+3+..+9\right)}{1+2+3+..+9}=\frac{90-45}{45}=1\)
=> a1 - 1 = 9 => a1 = 10
=> a2 - 2 = 8 => a2 = 10
...............................
=>a9 - 1 = 9 => a9 = 10
Áp dụng dãy tỉ sô bàng nhau ta có :
\(\frac{a1-1}{9}=\frac{a2-2}{8}=....=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+...+1}\)
\(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+..+9\right)}{1+2+..+9}=\frac{90-45}{45}=1\)
=>a1 - 1 = 9 => a1 = 10
=> a2- 2 = 8 => a2 = 10
=> a3 - 3 = 7 => a3 = 10
.......................
=> a9 - 9 = 1 => a9 = 10
Vậy a1 = a2 = ...=a9 = 10
Áp dụng tính chất dãy tỉ số bằng nhau:
kết quả:a1=a2=....=a9=10
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1+a2+a3+....+a9-45}{45}=\frac{45}{45}=1\)
Bài 1:
Ta có: \(\frac{a}{b}=\frac{b}{d}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+d^2}\) (1).
Lại có:
\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\left(đpcm\right).\)
Chúc bạn học tốt!
\(a_1/a_2 = ... = a_9/a_1 = (a_1+...+a_9)/(a_2+...+a_9 +a_1) =1\)
Theo bài ra ta có: \(a_1+a_2+...+a_9=90\)
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{a_1-1}{9}=1\Rightarrow a_1-1=9\Rightarrow a_1=10\\\frac{a_2-2}{8}=1\Rightarrow a_2-2=8\Rightarrow a_2=10\\.........\\\frac{a_9-9}{1}=1\Rightarrow a_9-9=1\Rightarrow a_9=10\end{matrix}\right.\)
Vậy \(a_1=10\)
a.
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\frac{a1-1}{9}=1\Rightarrow a1=9+1=10\)
\(\frac{a2-2}{8}=1\Rightarrow a2=8+2=10\)
.....
\(\frac{a9-9}{1}=1\Rightarrow a9=1+9=10\)
b.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Cách 2:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1+3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7+6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)
\(=\frac{90-45}{45}=1\)
+) \(\frac{a_1-1}{9}=1\)=> \(a_1=9+1\)=> \(a_1=10\)
\(\frac{a_2-2}{8}=1\)=> \(a_2=1\cdot8+2\)=> \(a_2=8+2=10\)
....
\(\frac{a_9-9}{1}=1\)=> \(a_9=1\cdot1+9\)=> \(a_9=10\)
Vậy \(a_1=a_2=a_3=...=a_9=10\)
Nhớ ghi tiêu đề nhé -.-