\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)


 tính giá trị biểu thức


 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{Giải :}\)

\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}.\left(2^{10}+1\right)}{2^{12}.\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=2^8\)

\(\text{#Hok tốt!}\)

21 tháng 8 2016

4^4

21 tháng 8 2016

\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8\)

25 tháng 10 2020

\(\frac{4^{10}+8^4}{4^5+8^5}=\frac{\left(2^2\right)^{10}+\left(2^3\right)^4}{\left(2^2\right)^5+\left(2^3\right)^5}=\frac{2^{20}+2^{12}}{2^{10}+2^{15}}\)

                    \(=\frac{2^{12}\left(2^8+1\right)}{2^{10}\left(1+2^5\right)}=\frac{2^{12}.257}{2^{10}.33}=\frac{2^2.257}{33}=\frac{1028}{33}\)    

24 tháng 10 2020

\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)   

\(=\frac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}\)   

\(=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)   

\(=\frac{2^{30}+2^{20}}{2^{22}+2^{12}}\)   

\(=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}\)   

\(=\frac{2^{20}}{2^{12}}\)   

\(=2^8\)   

\(=256\)

\(\frac{7.2^{32}.3^8.5^4-2^9.3^9.2^8.5^4}{2^{10}.3^{10}.2^5.5^5-7.3^9.4^8.5^4}=\frac{7.2^{32}.3^8.5^4-2^{17}.3^9.5^4}{2^{15}.3^{10}.5^5-7.3^9.2^{16}.5^4}\)

\(\frac{2^{17}.3^8.5^4\left(2^5.7-1\right)}{2^{15}.3^9.5^4\left(3.5-7.2\right)}=\frac{2^{17}.3^8.5^4\left(32.7-1\right)}{2^{15}.3^9.5^4\left(15-14\right)}\)

22 tháng 7 2016

bn ơi dễ như vậy mà không giải được sao

22 tháng 7 2016

Giúp mình với

\(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}\)

\(=2^8=256\)

Mình không phải CTV nhưng có thể giúp bạn  :)

Đừng dựa dẫm nhiều vào CTV nha bạn!

\(\frac{8^{10}+4^{10}}{8^4+4^{11}}\)

\(=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}\)

\(=\frac{2^{20}×2^{10}+2^{20}}{2^{12}+2^{12}×2^{10}}\)

\(=\frac{2^{20}×\left(2^{10}+1\right)}{2^{12}×\left(1+2^{10}\right)}\)

\(=\frac{2^{20}}{2^{12}}=2^8\)

Cbht

I don't now 

sorry 

...................

nha

27 tháng 7 2018

\(A=\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{3^{15}}=9\)

\(B=\frac{45^{10}.5^{10}}{75^{10}}=\frac{5^{10}.3^{20}.5^{10}}{5^{20}.3^{10}}=3^{10}\)

\(C=\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(0,4\right)^5.\left(0,2\right)^5}{0,4^6}=\frac{0,2^5}{0,2^2}=0,2^3\)

\(D=\frac{8^{10}+4^{10}}{8^{11}+4^{11}}=\frac{4^{10}\left(2^{10}+1\right)}{4^{11}\left(2^{11}+1\right)}=\frac{2^{10}+1}{2^{13}+1}\)

9 tháng 11 2019

\(A=\frac{4\sqrt{x}+11}{4\sqrt{x}+3}=1+\frac{8}{4\sqrt{x}+3}\)(x khác 0)

Để A nguyên thì \(\frac{8}{4\sqrt{x}+3}\)nguyên

\(\Leftrightarrow8⋮\left(4\sqrt{x}+3\right)\)

Mà \(4\sqrt{x}+3\)lẻ nên \(4\sqrt{x}+3\in\left\{\pm1\right\}\)

Mà \(4\sqrt{x}+3\ge3\)nên không có x thỏa mãn để A nguyên

9 tháng 11 2019

ĐK : \(x\ge0\)

\(\frac{4\sqrt{x}+11}{4\sqrt{x}+3}=\frac{4\sqrt{x}+3+8}{4\sqrt{x}+3}\)\(=1+\frac{8}{4\sqrt{x}+3}\)

Để \(\frac{4\sqrt{x}+11}{4\sqrt{x}+3}\)nguyên \(\Leftrightarrow1+\frac{8}{4\sqrt{x}+3}\)nguyên

                                               \(\Leftrightarrow\frac{8}{4\sqrt{x}+3}\) nguyên

                                                 \(\Leftrightarrow8⋮\left(4\sqrt{x}+3\right)\)

                                                \(\Leftrightarrow4\sqrt{x}+3\inƯ\left(8\right)\)

                                                  \(\Leftrightarrow4\sqrt{x}+3\in\left\{1,2,4,8,-1,-2,-4,-8\right\}\)

                                                \(\Leftrightarrow4\sqrt{x}\in\left\{-2,-1,1,5,-4,-5,-7,-11\right\}\)

                                                 \(\Leftrightarrow\sqrt{x}\in\left\{-\frac{1}{2},-\frac{1}{4},\frac{1}{4},-1,-\frac{5}{4},-\frac{7}{4},-\frac{11}{4}\right\}\)

                                                 mà \(\sqrt{x}\ge0\)         

                                              \(\Leftrightarrow\sqrt{x}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)