Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{7}{10.11}+\frac{7}{11.12}+...+\frac{7}{69.70}\)
\(B=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{69.70}\right)\)
\(B=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(B=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(B=7.\left(\frac{7}{70}-\frac{1}{70}\right)\)
\(B=7.\frac{6}{70}\)
\(B=\frac{3}{5}\)
Chúc bạn học tốt !!!
\(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\frac{1}{10.11}+7.\frac{1}{11.12}+7.\frac{1}{12.13}+...+7.\frac{1}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)
\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=\frac{6}{70}\)
\(=\frac{3}{35}\)
a) \(C=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)
\(C=1.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)
\(C=1.\left(\frac{1}{4}-\frac{1}{76}\right)\)
\(C=1.\frac{9}{38}\)
\(C=\frac{9}{38}\)
b) \(D=\frac{5}{10.11}+\frac{5}{11.12}+\frac{5}{12.13}+...+\frac{5}{99.100}\)
\(D=5.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\right)\)
\(D=5.\left(\frac{1}{10}-\frac{1}{100}\right)\)
\(D=5.\frac{9}{100}\)
\(D=\frac{99}{20}\)
\(C=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{7}{52.65}+\frac{1}{13.70}\)
\(C=\frac{16}{15.31}+\frac{14}{31.45}+\frac{7}{45.52}+\frac{13}{52.65}+\frac{5}{67.70}\)
\(C=\frac{1}{15}-\frac{1}{31}+\frac{1}{31}-\frac{1}{45}+\frac{1}{45}-\frac{1}{52}+\frac{1}{52}-\frac{1}{65}+\frac{1}{65}-\frac{1}{70}\)
\(C=\frac{1}{15}-\frac{1}{70}\)
\(C=\frac{11}{210}\)
Vậy: \(C=\frac{11}{210}\)
Cách 2:
\(\frac{1}{11.11}+\frac{1}{10.10}+....+\frac{1}{5.5}<\frac{1}{10.11}+\frac{1}{9.10}+....+\frac{1}{4.5}=\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{10.11}\)\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}=\frac{7}{44}\)
Nên 1/11.11 + 1/10.10 +.....+1/5.5 < 7/44
Cách này thuận tiện hơn
Bài 2:
a: \(A=\dfrac{11\cdot10\left(1+5\cdot5+7\cdot7\right)}{11\cdot12\left(1+5\cdot5+7\cdot7\right)}=\dfrac{10}{12}=\dfrac{5}{6}\)
\(B=\dfrac{1}{8}\cdot\dfrac{125}{5}\cdot\dfrac{81}{81}\cdot\dfrac{64}{8}=25\)
\(\frac{7}{10.11}+\frac{7}{11.12}+...+\frac{7}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7.\frac{3}{35}\)
\(=\frac{3}{5}\)
Chúc bạn học tốt !
\(\frac{7}{10\cdot11}+\frac{7}{11\cdot12}+...+\frac{7}{69\cdot70}\)
\(=7\cdot\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7\cdot\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7\cdot\frac{3}{35}\)
\(=\frac{3}{5}\)