Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=...\)
\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-...-\frac{1}{2}+1\)
\(=\frac{1}{99}-1=\frac{-98}{99}\)
\(M=...\)
\(=\frac{2}{2}+\frac{1}{2}+\frac{4}{4}+\frac{1}{4}+...+\frac{64}{64}+\frac{1}{64}-7\)
\(=1+1+1+1+1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-7\)
\(=\frac{1+2+2^2+2^3+2^4+2^5}{2^6}-1\)
\(=\frac{2^6-1}{2^6}-1=1-\frac{1}{2^6}-1=-\frac{1}{2^6}\)
\(B=\frac{\frac{1}{3}-\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}-\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}-\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
=>\(B=\frac{1.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}{3.\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{14}\right)}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{\frac{4}{4}-\frac{4}{16}-\frac{4}{64}-\frac{4}{256}}+\frac{5}{8}\)
=>\(B=\frac{1}{3}.\frac{3.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}{4.\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{64}-\frac{1}{256}\right)}+\frac{5}{8}\)
=>\(B=\frac{1}{3}.\frac{3}{4}+\frac{5}{8}\)
=>\(B=\frac{1}{4}+\frac{5}{8}\)
=>\(B=\frac{2}{8}+\frac{5}{8}\)
=>\(B=\frac{7}{8}\)
l-i-k-e cho mình nhé bạn.
a: \(=\left(\dfrac{2}{18}-\dfrac{15}{18}-\dfrac{72}{18}\right):\left(\dfrac{21}{36}-\dfrac{1}{36}-\dfrac{360}{36}\right)\)
\(=\dfrac{-85}{18}:\dfrac{-170}{18}\)
\(=\dfrac{85}{170}=\dfrac{1}{2}\)
b: \(=\left(\dfrac{5}{8}-\dfrac{5}{6}-\dfrac{5}{32}+\dfrac{5}{64}\right):\left(1-\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}\right)\)
\(=\dfrac{-55}{192}:\dfrac{3}{8}=\dfrac{-55}{192}\cdot\dfrac{8}{3}=-\dfrac{55}{72}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(\frac{127}{128}\)
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
\(2A+A=\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
\(3A=1-\frac{1}{2^6}\)
\(3A=\frac{2^6-1}{2^6}\)
\(A=\frac{\frac{2^6-1}{2^6}}{3}< \frac{1}{3}\)
Vậy \(A< 3\)
Chúc bạn học tốt ~
\(\frac{6}{13}+\frac{2}{26}=\frac{6}{13}+\frac{1}{13}=\frac{7}{13}\)
\(\frac{64}{8}+\frac{32}{8}=\frac{96}{8}=12\)
Ủng hộ nha..!
6/13 + 2/26
= 6/13 + 1/13
= 7/13
64/8 + 32/8
= 8 + 4
= 12