Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
a./ \(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{-10}{2}=-5\)
\(\Rightarrow x=-25;y=-35;z=-20\)
b./ \(\frac{x}{5}=\frac{y}{-4}=\frac{z}{-7}=\frac{x+y-z}{5-4-\left(-7\right)}=\frac{-40}{6}=-5\)
\(\Rightarrow x=-25;y=20;z=35\)
Áp dụng t/c của dảy tỉ số bằng nhau:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow x+1=2\cdot3=6\Rightarrow x=5\)
\(y+2=2\cdot4=8\Rightarrow y=6\)
\(z+3=2\cdot5=10\Rightarrow z=7\)
Vậy x= 5, y= 6 , z=7
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\) và x + y + x = 18
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{x+y+z+6}{12}=\frac{18+6}{12}=\frac{24}{12}=2\)
=> \(\frac{x+1}{3}=2\)--> x+1 =6 --> x =5
\(\frac{y+2}{4}=2\)--> y +2 = 8 --> y=6
\(\frac{z+3}{5}=2\)--> z + 3 = 10 --> z = 7
Vậy x = 5 , y = 6 , z = 7
Ta thấy: \(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x+y+z}{5+7+9}=\frac{315}{21}=15\)
Khi đó:
\(\frac{x}{5}=15\)\(\Rightarrow x=15\cdot5=75\)
\(\frac{y}{7}=15\)\(\Rightarrow y=15\cdot7=105\)
\(\frac{z}{9}=15\)\(\Rightarrow z=15\cdot9=135\)