Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)
\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)
\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)
\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)
\(\Leftrightarrow6x+4=0\)
\(\Leftrightarrow x=-\frac{4}{6}\)
\(\Leftrightarrow x=-\frac{2}{3}\)
Vậy x = -2/3 là nghiệm.
@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4
Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)
Bài làm
j) \(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\) ĐKXĐ: \(x\ne\pm5\)
\(\Leftrightarrow\frac{\left(x+5\right)^2}{x^2-25}-\frac{\left(x-5\right)^2}{x^2-25}=\frac{20}{x^2-25}\)
\(\Rightarrow x^2+10x+25-x^2+10x-25=20\)
\(\Leftrightarrow20x=20\)
\(\Leftrightarrow x=1\)
Vậy x = 1 là nghiệm phương trình.
k) \(\frac{3}{x-4}+\frac{5x-2}{x^2-16}=\frac{4}{x+4}\)
\(\Leftrightarrow\frac{3\left(x+4\right)}{x^2-16}+\frac{5x-2}{x^2-16}=\frac{4\left(x-4\right)}{x^2-16}\)
\(\Rightarrow3x+12+5x-2=4x-16\)
\(\Leftrightarrow4x=-26\)
<=> \(x=-\frac{13}{2}\)
Vậy x = -13/2 là nghiệm phương trình.
l) \(\frac{2x-1}{3}-\frac{5x+2}{4}=2x\)
\(\Leftrightarrow4x-4-15x-6=24x\)
\(\Leftrightarrow-35x=10\)
\(\Leftrightarrow x=-\frac{2}{7}\)
Vậy x = -2/7 là nghiệm phương trình.
Bài làm
2 - x = 3x + 1
<=> - x - 3x = -2 + 1
<=> -4x = -1
<=> x = 1/4
Vậy x = 1/4 là nghiệm phương trình.
4x + 7( x - 2 ) = -9x + 5
<=> 4x + 7x - 14 = -9x + 5
<=> 4x + 7x + 9x = 14 + 5
<=> 20x = 19
<=> x = 19/20
Vậy x = 19/20 là nghiệm phương trình.
5x - 2( 3x - 5 ) = 7x + 11
<=> 5x - 6x + 10 = 7x + 11
<=> 5x - 6x - 7x = 11 - 10
<=> -8x = -21
<=> x = 21/8
Vậy x = 21/8 là nghiệm phương trình.
( 5x + 2 )( x - 7 ) = 0
<=> \(\left[{}\begin{matrix}5x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{5}\\x=7\end{matrix}\right.\)
Vậy tập nghiệm phương trình S = { -2/5; 7 }
2x( x - 5 ) + 3( x - 5 ) = 0
<=> ( 2x + 3 )( x - 5 ) = 0
<=> \(\left[{}\begin{matrix}2x+3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=5\end{matrix}\right.\)
Vậy tập nghiệm phương trìh S = { -3/2; 5 }
\(\frac{5x-3}{6}=\frac{-2x+5}{9}\)
\(\Rightarrow6\left(-2x+5\right)=9\left(5x-3\right)\)
\(\Leftrightarrow-12x+30=45x-27\)
\(\Leftrightarrow-57x=-57\)
\(\Leftrightarrow x=1\)
Vậy x = 1 là nghiệm phương trình.
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{5x}{6}\)
\(\Leftrightarrow2x-3\left(2x+1\right)=5x\)
\(\Leftrightarrow2x-6x-3=5x\)
\(\Leftrightarrow-9x=3\)
\(\Leftrightarrow x=-\frac{1}{3}\)
Vậy x = -1/3 là nghiệm phương trình.
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow2x-6x-3=x-6x\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy x = 3/2 là nghiệm phương trình.
\(\frac{3}{x+1}=\frac{5}{2x+2}\) ĐKXĐ: x khác 1
<=> \(\frac{6}{2x+2}=\frac{5}{2x+2}\)( vô lí )
Vậy phương trình trên vô nghiệm.
# Học tốt #
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
a) ĐKXĐ: \(x\ne1\)
Ta có: \(\frac{7x-3}{x-1}=\frac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-9-2x+2=0\)
\(\Leftrightarrow19x-7=0\)
\(\Leftrightarrow19x=7\)
hay \(x=\frac{7}{19}\)
Vậy: \(x=\frac{7}{19}\)
b) ĐKXĐ: \(x\ne-1\)
Ta có: \(\frac{2\left(3-7x\right)}{1+x}=\frac{1}{2}\)
\(\Leftrightarrow4\left(3-7x\right)=1+x\)
\(\Leftrightarrow12-28x-1-x=0\)
\(\Leftrightarrow11-29x=0\)
\(\Leftrightarrow29x=11\)
hay \(x=\frac{11}{29}\)
Vậy: \(x=\frac{11}{29}\)
c) ĐKXĐ: \(x\notin\left\{\frac{-2}{3};\frac{1}{3}\right\}\)
Ta có: \(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)
\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow15x^2-8x+1-15x^2+11x+14=0\)
\(\Leftrightarrow3x+15=0\)
\(\Leftrightarrow3x=-15\)
hay x=-5
Vậy: x=-5
d) ĐKXĐ: \(x\notin\left\{1;\frac{-4}{3}\right\}\)
Ta có: \(\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+16x+21x+28=12x^2-12x+5x-5\)
\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)
\(\Leftrightarrow12x^2+37x+28-12x^2+7x+5=0\)
\(\Leftrightarrow44x+33=0\)
\(\Leftrightarrow44x=-33\)
hay \(x=\frac{-3}{4}\)
Vậy: \(x=\frac{-3}{4}\)
a)
\(\frac{7x-3}{x-1}=\frac{2}{3}\\ \Leftrightarrow\frac{21x-9}{3\cdot\left(x-1\right)}-\frac{2x-2}{3\cdot\left(x-1\right)}=0\\ \Leftrightarrow\frac{21x-9-2x+2}{3\cdot\left(x-1\right)}=0\\ \Leftrightarrow\frac{19x-7}{3\cdot\left(x-1\right)}=0\\ \Rightarrow19x-7=0\\ \Rightarrow x=\frac{7}{19}\)
b)
\(\frac{2\cdot\left(3-7x\right)}{1+x}=\frac{1}{2}\\ \Leftrightarrow\frac{12-28x}{2\cdot\left(1+x\right)}-\frac{1+x}{2\cdot\left(1+x\right)}=0\\ \Leftrightarrow\frac{12-28x-1-x}{2\cdot\left(1+x\right)}=0\\ \Leftrightarrow\frac{11-29x}{2\cdot\left(1+x\right)}=0\\\Rightarrow11-29x=0\\ \Rightarrow x=\frac{11}{29}\)
c)
\(\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\\ \Leftrightarrow\frac{15x^2-8x+1}{\left(3x+2\right)\cdot\left(3x-1\right)}-\frac{15x^2-11x-14}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Leftrightarrow\frac{15x^2-8x+1-15x^2+11x+14}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Leftrightarrow\frac{3x+15}{\left(3x+2\right)\cdot\left(3x-1\right)}=0\\ \Rightarrow3x+15=0\\ \Rightarrow x=-5\)
d)
\(\frac{4x+7}{x-1}=\frac{12x+5}{3x+4}\\ \Leftrightarrow\frac{12x^2+37x+28}{\left(x-1\right)\cdot\left(3x+4\right)}-\frac{12x^2-7x-5}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow\frac{12x^2+37x+28-12x^2+7x+5}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow\frac{44x+33}{\left(x-1\right)\cdot\left(3x+4\right)}=0\\ \Leftrightarrow44x+33=0\\ \Rightarrow x=-\frac{3}{4}\)
\(=\frac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}.\frac{5\left(x-1\right)}{3\left(x+1\right)}=\frac{x\left(x+1\right).5\left(x-1\right)}{5\left(x-1\right)^2.3\left(x+1\right)}=\frac{x}{3x-3}\)
\(\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\)
=\(\frac{x\left(x+1\right)}{5\left(x^2-2+1\right)}:\frac{3\left(x+1\right)}{5\left(x-1\right)}\)
=\(\frac{x\left(x+1\right)}{5\left(x-1\right)^2}:\frac{3\left(x+1\right)}{5\left(x-1\right)}\)
=\(\frac{x\left(x+1\right)}{5\left(x-1\right)^2}\cdot\frac{5\left(x-1\right)}{3\left(x+1\right)}\)
=\(\frac{x}{3\left(x-1\right)}\)
Giải:
a) \(\frac{3x+2}{3x-2}\)−62+3x=9x29x2−4 ⇔ \(\frac{9x^2+12x+4}{\left(3x-2\right)\left(3x+2\right)}\) - \(\frac{18x-12}{\left(3x-2\right)\left(3x+2\right)}\) = \(\frac{9x^2}{9x^2-4}\) ⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0
⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)
Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .
b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
⇔ \(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4
⇔ 8 = 4 ( vô lí)
Vậy phương trình trên vô nghiệm.
Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!
a) \(\frac{9x-0,7}{4}\)\(-\)\(\frac{5x-1,5}{7}\)=\(\frac{12x-2,1}{3}\)
⇔\(\frac{21\left(9x-0,7\right)}{84}\)\(-\)\(\frac{12\left(5x-1,5\right)}{84}\)=\(\frac{28\left(12x-2,1\right)}{84}\)
⇒189x\(-\)14,7\(-\)60x+18=336x\(-\)58,8
⇔\(-\)207x=\(-\)62,1
⇔x=\(\frac{3}{10}\)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{3}{10}\)}
\(\frac{5x-2}{3}=\frac{5-3x}{2}\)
<=> \(\frac{\left(5x-2\right).2}{3.2}=\frac{\left(5-3x\right).3}{2.3}\)
<=> \(\frac{10x-4}{6}=\frac{15-9x}{6}\)
Suy ra: 10x - 4 = 15 - 9x
<=> 10x + 9x = 15 + 4
<=> 19x = 19
<=> x = 19:19
<=> x = 1
Vậy: S={1}
Trả lời :
\(\frac{5x-2}{3}=\frac{5-3x}{2}\)
\(\Rightarrow2\times\left(5x-2\right)=3\times\left(5-3x\right)\)
\(\Rightarrow10x-4=15-9x\)
\(\Rightarrow10x+9x=15+4\)
\(\Rightarrow19x=19\)
\(\Rightarrow x=1\)