Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ĐKXĐ: \(y\ne4\)
Đặt \(y-4=x\)
\(1+\frac{45}{x^2}=\frac{14}{x}\Leftrightarrow x^2-14x+45=0\Rightarrow\left[{}\begin{matrix}x=9\\x=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y-4=9\\y-4=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y=13\\y=9\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ne1\)
Đặt \(x-1=y\)
\(\frac{5}{y}-\frac{4}{3y^2}=3\Leftrightarrow9y^2=15y-4\)
\(\Leftrightarrow9y^2-15y+4=0\Rightarrow\left[{}\begin{matrix}y=\frac{4}{3}\\y=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{4}{3}\\x-1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne5\)
\(\Leftrightarrow2x-5=3x-15\)
\(\Leftrightarrow x=10\)
d/ ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow2\left(x^2-12\right)=2x^2+3x\)
\(\Leftrightarrow3x=-24\Rightarrow x=-8\)
e/ ĐKXĐ: \(x\ne2\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=1\end{matrix}\right.\)
f/ DKXĐ: \(x\ne-\frac{1}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=8\)
\(\Leftrightarrow4x^2-1=8\)
\(\Leftrightarrow x^2=\frac{9}{4}\Rightarrow x=\pm\frac{3}{2}\)
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\) \(Đkxđ:.......\)
Đặt: \(t=x^2-3x+2\left(t\ne0\right)\)
\(\Rightarrow2t=2x^2-6x+4\)
\(\Rightarrow2x^2-6x+1=2t-3\)
\(Pt:\Leftrightarrow\frac{4}{7}-\frac{3}{2t-3}+1=0\)
\(\Leftrightarrow4\left(2t-3\right)-3t+t\left(2t-3\right)=0\)
\(\Leftrightarrow8t-12-3t+2t^2-3t=0\)
\(\Leftrightarrow2t^2+2t-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-3\end{matrix}\right.\left(tm:\left[{}\begin{matrix}t\ne0\\t\ne\frac{3}{2}\end{matrix}\right.\right)\)
+ Với \(t=2\) thì: \(x^2-3x+2=2\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\left(tmđk\right)\)
+ Với \(t=-3\) thì \(x^2-3x+2=-3\)
\(\Leftrightarrow x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2+\frac{11}{4}=0\left(vô-lí\right)\)
Vậy pt có nghiệm: \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Bài 2:
ĐKXĐ: $x\neq 1;2;3;6$
PT $\Leftrightarrow \frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}-\frac{1}{x-1}$
$\Leftrightarrow \frac{5x-12}{x^2-5x+6}=\frac{5x}{x^2-7x+6}$
Đặt $x^2+6=t$ thì $\frac{5x-12}{t-5x}=\frac{5x}{t-7x}$
$\Rightarrow (5x-12)(t-7x)=5x(t-5x)$
$\Leftrightarrow 10x^2+12t+84x=0$
$\Leftrightarrow 10x^2+12(x^2+6)+84x=0$
$\Leftrightarrow 22x^2+84x+72=0$
$\Leftrightarrow 11x^2+42x+36=0$
$\Rightarrow x=\frac{-21\pm 3\sqrt{5}}{11}$
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0
Đặt x2 + 4x + 8 = t ta được:
t2 + 3xt + 2x2 = 0
\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0
\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0
\(\Leftrightarrow\) (t + x)(t + 2x) = 0
Thay t = x2 + 4x + 8 ta được:
(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0
\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0
\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0
\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0
Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)
Vậy S = {-4; -2}
Mình giúp bn phần khó thôi!
Chúc bn học tốt!!
c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)
⇔\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
⇒x2+x+1+2x2-5=4x-4
⇔3x2-3x=0
⇔3x(x-1)=0
⇔x=0 (TMĐK) hoặc x=1 (loại)
Vậy tập nghiệm của phương trình đã cho là:S={0}
ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)
\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)
\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)
\(15-20x+6x-12=0\)
\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn