Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4^{1007}.9^{1007}}{3^{2015}.16^{503}}=\frac{4^{1007}.\left(3^2\right)^{1007}}{3^{2015}.\left(4^2\right)^{503}}=\frac{4^{1007}.3^{2014}}{3^{2015}.4^{1006}}=\frac{4}{3}\)
\(\frac{4^{1007}.9^{1007}}{3^{2015}.2^{2016}}=\frac{\left(2^2\right)^{1007}.\left(3^2\right)^{1007}}{3^{2015}.2^{2016}}\)
\(=\frac{2^{2014}.3^{2014}}{3^{2015}.2^{2016}}=\frac{2^{2014}.3^{2014}}{3^{2014}.2^{2014}.3.2^2}\)
\(=\frac{1}{3.2^2}=\frac{1}{3.4}=\frac{1}{12}\)
Rút gọn
\(\frac{4^{1007}\cdot9^{1007}}{3^{2015}\cdot2^{2016}}=\frac{\left(2^2\right)^{2007}\cdot\left(3^2\right)^{1007}}{3^{2015}\cdot2^{2016}}\)
\(=\frac{2^{2\cdot1007}\cdot3^{2\cdot1007}}{3^{2015}\cdot2^{2016}}=\frac{2^{2014}\cdot3^{2014}}{3^{2015}\cdot2^{2016}}\)
\(=\frac{1}{3.2^2}=\frac{1}{12}\)
Vậy ...
hok tót .
Bài giải
\(\frac{2-x}{2015}+\frac{3-x}{1007}+\frac{4-x}{671}=\frac{2005-x}{2}\)
\(( \frac{2-x}{2015}+1 )+ (\frac{3-x}{1007}+2 )+ ( \frac{4-x}{671}+3 )=\frac{2005-x}{2}+6\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}=\frac{2017-x}{2}\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}-\frac{2017-x}{2}=0\)
\((2017-x)(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2})=0\)
Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2}\ne0\)
\(\Rightarrow\text{ }2017-x=0\)
\(\Rightarrow\text{ }x=2017\)
S=\(\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}-\frac{1}{4}-...-\frac{1}{2012}\right)\)
S=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
S=\(\left(\text{}\text{}\text{}1+\frac{1}{2}+...+\frac{1}{2013}\right)-1-\frac{1}{2}-...-\frac{1}{2012}\)
S=\(\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)
=>S=P
=>S-P=0
=>(S-P)^2013=0