Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}\)=\(\frac{c}{d}\)=k \(\Rightarrow\)a=bk ;c=dk
\(\Rightarrow\)\(\frac{a}{a-c}\)=\(\frac{bk}{bk-b}\)=\(\frac{bk}{b\left(k-1\right)}\)=\(\frac{k}{k-1}\)(1)
\(\frac{c}{c-d}\)=\(\frac{dk}{dk-d}\)=\(\frac{dk}{d\left(k-1\right)}\)=\(\frac{k}{k-1}\) (2)
Từ (1) và (2) \(\frac{a}{a-b}\)=\(\frac{c}{c-d}\) (đpcm)
a/b=c/d => b/a=d/c=>1-b/a=1-d/c=a-b/a=c-d/c đạo ngược lại ta có a/a-b=c/c-d
Ta luôn chứng minh được: Nếu \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)và \(\frac{a}{b}< \frac{a-1}{b-1}\)
Áp dụng điều trên ta có:
\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}\)
=> \(S>\frac{3}{2}.\frac{5}{4}.\frac{7}{6}...\frac{201}{200}\)
=> \(S^2>\frac{2}{1}.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{200}{199}.\frac{201}{200}\)
=> S2 > 201 > 200 (1)
\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}\)
=> \(S< \frac{2}{1}.\frac{3}{2}.\frac{5}{4}...\frac{199}{198}\)
=> \(S^2< \frac{2}{1}.\frac{2}{1}.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}...\frac{199}{198}.\frac{200}{199}\)
=> \(S^2< 400\)(2)
Từ (1) và (2) => 200 < S2 < 400 (đpcm)
quá dễ
=1
3 cái nha
không biết lớp 5 đây