\(\frac{3x}{2}\)+\(\frac{1}{x+1}\) với x>=-1 tìm gtnn

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 8 2020

\(A=\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)

\(A_{min}=\sqrt{6}-\frac{3}{2}\) khi \(\frac{3\left(x+1\right)}{2}=\frac{1}{x+1}\Leftrightarrow x=\sqrt{\frac{2}{3}}-1\)

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

10 tháng 7 2019

Câu trên mình thấy sai sai vì nếu x càng lớn thì A càng nhỏ , bạn xem lại đề nhé

Câu 2

\(\frac{3}{2}x+\frac{6}{x}\ge6\)\(\frac{1}{2}y+\frac{8}{y}\ge4\)

\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

Cộng các bĐT trên

=> \(3x+2y+\frac{6}{x}+\frac{8}{y}\ge9+6+4=19\)

MinP=19 khi x=2;y=4

6 tháng 8 2015

a) áp dụng BĐT cô-si ta có:

\(y=\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}.\frac{18}{x}}=2\sqrt{9}=6\)

Dấu "=" xảy ra khi:

\(\frac{x}{2}+\frac{18}{x}=6\)

\(\Leftrightarrow\frac{x^2}{2x}+\frac{36}{2x}=\frac{12x}{2x}\)

\(\Rightarrow x^2+36=12x\)

\(\Leftrightarrow\left(x-6\right)^2=0\)

\(\Leftrightarrow x=6\)

tương tự mấy câu tiếp theo

6 tháng 8 2015

ngu người đê anh em

26 tháng 2 2020

Đây là bài tìm GTNN mà đâu phải BĐT (BĐT mình hơi ngu).

7 tháng 7 2020

các pro giúp em TvT

8 tháng 7 2020

\(A=\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}:\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\left(ĐKXĐ:x\ge0;x\ne1\right)\)

\(< =>A=\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{1}{x-\sqrt{x}}+\sqrt{x}\)

\(< =>A=\frac{1+\sqrt{x}\left(x-\sqrt{x}\right)}{x-\sqrt{x}}=\frac{1+x\sqrt{x}-x}{x-\sqrt{x}}\)

Với \(x=\frac{18}{4+\sqrt{7}}\)thì \(A=\frac{1+\frac{18}{4+\sqrt{7}}.\sqrt{\frac{18}{4+\sqrt{7}}}-\frac{18}{4+\sqrt{7}}}{\frac{18}{4+\sqrt{7}}-\sqrt{\frac{18}{4+\sqrt{7}}}}\)

\(=\frac{1}{18+\frac{4}{7}-\sqrt{18+\frac{4}{7}}}+\sqrt{18+4\sqrt{7}}\)

Em mới lớp 7 nên chỉ làm được thế thôi ạ :3

30 tháng 6 2020

Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)ta có: \(a,b,c>0;a+b+c=1\)do đó 0<a,b,c<1

\(P=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+6\left(ab+bc+ca\right)\)

\(=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+2\left(a+b+c\right)^2-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\left(\frac{b^2}{a}-2b+a\right)+\left(\frac{c^2}{b}-2c+b\right)+\left(\frac{a^2}{c}-2a+c\right)-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\frac{\left(a-b\right)^2}{a}+\frac{\left(b-c\right)^2}{b}+\frac{\left(c-a\right)^2}{c}-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2+3\)

\(=\frac{\left(1-a\right)\left(a-b\right)^2}{a}+\frac{\left(1-b\right)\left(b-c\right)^2}{b}+\frac{\left(1-c\right)\left(c-a\right)^2}{c}+3\ge3\)

Vậy GTNN của P=3

2 tháng 11 2019

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5