\(\frac{3}{\sqrt{10}-\sqrt{7}}+\frac{2}{3+\sqrt{7}}-\sqrt{40}\)

 

 

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

\(=\frac{3.\left(\sqrt{10}+\sqrt{7}\right)}{10-7}+\frac{2.\left(3-\sqrt{7}\right)}{9-7}-2\sqrt{10}\)

\(=\sqrt{10}+\sqrt{7}+3-\sqrt{7}-2\sqrt{10}\)

\(=-\sqrt{10}+3\)

5 tháng 8 2018

\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

 \(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)

\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)

\(=-2+\sqrt{6}-3+2\sqrt{6}\)

\(=-5+3\sqrt{6}\)

5 tháng 8 2018

\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)

\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)

\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)

\(=3-\sqrt{7}-2+2\sqrt{7}\)

\(=1+\sqrt{7}\)

19 tháng 7 2019
https://i.imgur.com/9Px2Glj.jpg
19 tháng 7 2019

\(1)\dfrac{{14}}{{\sqrt 7 }} = \dfrac{{14\sqrt 7 }}{{\sqrt 7 .\sqrt 7 }} = \dfrac{{14\sqrt 7 }}{7} = 2\sqrt 7 \\ 2)\dfrac{{\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{\sqrt 3 .\sqrt 2 }}{{\sqrt 2 .\sqrt 2 }} = \dfrac{{\sqrt 6 }}{2}\\ 3)\dfrac{5}{{\sqrt {10} }} = \dfrac{{5\sqrt {10} }}{{\sqrt {10} .\sqrt {10} }} = \dfrac{{5\sqrt {10} }}{{10}} = \dfrac{{\sqrt {10} }}{2}\\ 4)\dfrac{3}{{2\sqrt 5 }} = \dfrac{{3.2\sqrt 5 }}{{2\sqrt 5 .2\sqrt 5 }} = \dfrac{{6\sqrt 5 }}{{20}} = \dfrac{{3\sqrt 5 }}{{10}}\\ 5)\dfrac{{7 + \sqrt 7 }}{{\sqrt 7 + 1}} = \dfrac{{\left( {7 + \sqrt 7 } \right)\left( {\sqrt 7 - 1} \right)}}{{\left( {\sqrt 7 + 1} \right)\left( {\sqrt 7 - 1} \right)}} = \dfrac{{6\sqrt 7 }}{6} = \sqrt 7 \\ 6)\dfrac{{\sqrt 2 - \sqrt 6 }}{{3\sqrt 3 - 3}} = \dfrac{{\left( {\sqrt 2 - \sqrt 6 } \right)\left( {3\sqrt 3 + 3} \right)}}{{\left( {3\sqrt 3 - 3} \right)\left( {3\sqrt 3 + 3} \right)}} = \dfrac{{ - 2\sqrt 2 }}{6} = \dfrac{{ - \sqrt 2 }}{3}\\ 7)\dfrac{{\sqrt 3 }}{{3 - \sqrt 3 }} = \dfrac{{\sqrt 3 \left( {3 + \sqrt 3 } \right)}}{{\left( {3 - \sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}} = \dfrac{{3\sqrt 3 + 3}}{6} = \dfrac{{3\left( {\sqrt 3 + 1} \right)}}{6} = \dfrac{{\sqrt 3 + 1}}{2}\\ 8)\dfrac{2}{{2 - \sqrt 3 }} = \dfrac{{2\left( {2 + \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}} = 4 + 2\sqrt 3 \\ 9)\dfrac{{\sqrt 3 + 2}}{{2 - \sqrt 3 }} = \dfrac{{\left( {\sqrt 3 + 2} \right)\left( {2 + \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}} = 7 + 4\sqrt 3 \\ 10)\dfrac{{3\sqrt 5 }}{{2\sqrt 5 - 1}} = \dfrac{{3\sqrt 5 \left( {2\sqrt 5 + 1} \right)}}{{\left( {2\sqrt 5 - 1} \right)\left( {2\sqrt 5 + 1} \right)}} = \dfrac{{30 + 3\sqrt 5 }}{{19}}\\ 11)\dfrac{1}{{\sqrt 3 }} = \dfrac{{1.\sqrt 3 }}{{\sqrt 3 .\sqrt 3 }} = \dfrac{{\sqrt 3 }}{3} \)

NV
19 tháng 3 2019

a/ \(2\sqrt{10}-10\sqrt{10}+9\sqrt{10}=\sqrt{10}\)

b/ \(\frac{-1\left(4-3\sqrt{2}\right)+1\left(4+3\sqrt{2}\right)}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\frac{-4+3\sqrt{2}+4+3\sqrt{2}}{16-18}=\frac{6\sqrt{2}}{-2}=-3\sqrt{2}\)

c/ \(\left(3+\sqrt{5}\right).\sqrt{2}.\sqrt{7-3\sqrt{5}}=\left(3+\sqrt{5}\right)\sqrt{14-6\sqrt{5}}\)

\(=\left(3+\sqrt{5}\right)\sqrt{\left(3-\sqrt{5}\right)^2}=\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)=9-5=4\)

d/ \(3\sqrt{2}-4\sqrt{2}+5\sqrt{2}=4\sqrt{2}\)

e/ \(\sqrt{19+8\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(4+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=4+\sqrt{3}+2-\sqrt{3}=6\)

18 tháng 7 2018

a) \(\sqrt{200}+2\sqrt{108}-\sqrt{98}+\frac{1}{3}\sqrt{\frac{81}{3}}-3\sqrt{75}\)

\(=10\sqrt{2}+12\sqrt{3}-7\sqrt{2}+\sqrt{3}-15\sqrt{3}\)

\(=3\sqrt{2}-2\sqrt{3}\)

b)\(\left(21\sqrt{\frac{1}{7}}+\frac{1}{2}\sqrt{112}-\frac{14}{3}\sqrt{\frac{9}{7}}+7\right):3\sqrt{7}\)

\(=\left(3\sqrt{7}+2\sqrt{7}-2\sqrt{7}+7\right):3\sqrt{7}\)

\(=\frac{\sqrt{7}\left(3+\sqrt{7}\right)}{3\sqrt{7}}=\frac{\sqrt{7}+3}{3}\)

c)\(\left(\sqrt{27}-\sqrt{125}+\sqrt{45}+\sqrt{12}\right)\left(\sqrt{75}+\sqrt{20}\right)\)

\(=\left(3\sqrt{3}-5\sqrt{5}+3\sqrt{5}+2\sqrt{3}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)

\(=\left(5\sqrt{3}-2\sqrt{5}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)

\(=75-20=55\)

d)\(\left(\frac{3}{\sqrt{6}-3}-\frac{3}{\sqrt{6}+3}\right).\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\frac{\sqrt{28-6\sqrt{3}}}{1}\)

\(=\frac{3\left(\sqrt{6}+3\right)-3\left(\sqrt{6}-3\right)}{-3}.\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\sqrt{\left(3\sqrt{3}-1\right)^2}\)

\(=\frac{-6\left(3-\sqrt{3}\right)}{2-2\sqrt{3}}-\left(3\sqrt{3}-1\right)\left(do3\sqrt{3}>1\right)\)

\(=\frac{6\sqrt{3}-18}{2-2\sqrt{3}}-\frac{8\sqrt{3}-20}{2-2\sqrt{3}}\)

\(=\frac{6\sqrt{3}-18-8\sqrt{3}+20}{2-2\sqrt{3}}=\frac{2-2\sqrt{3}}{2-2\sqrt{3}}=1\)

21 tháng 9 2020

\(A=\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)

\(A^2=\left(7+2\sqrt{10}+7-2\sqrt{10}\right)+2\sqrt{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\)

\(=14+2\sqrt{49-40}=14+6=20\)

Khi đó:\(A=\sqrt{20}\)

Các câu còn lại bạn làm nốt nhé

19 tháng 8 2020

\(a,\frac{6}{4+\sqrt{4-2\sqrt{3}}}=\frac{6}{4+\sqrt{\sqrt{3}^2-2\sqrt{3}+\sqrt{1}^2}}\)

\(=\frac{6}{4+\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}}=\frac{6}{4+|\sqrt{3}-1|}=\frac{6}{3+\sqrt{3}}\)

\(=\frac{6}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{36}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{3}.\sqrt{12}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{12}}{\sqrt{3}+1}\)

\(d,\frac{1}{\sqrt{7-2\sqrt{10}}}+\frac{1}{\sqrt{7+2\sqrt{10}}}\)

\(=\frac{1}{\sqrt{\sqrt{5}^2-2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}+\frac{1}{\sqrt{\sqrt{5}^2+2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}\)

\(=\frac{1}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)}}+\frac{1}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\frac{1}{\sqrt{5}-\sqrt{2}}+\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)

\(=\frac{2\sqrt{5}}{\sqrt{5}^2-\sqrt{2}^2}=\frac{\sqrt{5.4}}{5-2}=\frac{\sqrt{20}}{3}\)