\(\frac{3}{8+\frac{3}{8+\frac{3}{8+\frac{3}{8+\frac{3}{8+\frac{3}{8+\frac{3}{8+\frac{3}{8+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

undefinedundefined

3 tháng 10 2020

a) Ta có: \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)

\(=\left(-\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)

\(=-2+2\sqrt{5}-\sqrt{5}\)

\(=-2+\sqrt{5}\)

3 tháng 10 2020

b) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right)\div\frac{1}{8}\)

\(=\left(\frac{\sqrt{2}}{4}-\frac{3\sqrt{2}}{2}+8\sqrt{2}\right)\cdot8\)

\(=\frac{27\sqrt{2}}{4}\cdot8\)

\(=54\sqrt{2}\)

13 tháng 10 2022

tks bn

25 tháng 7 2020

Trả lời:

Đặt \(B=\sqrt[3]{\frac{1}{4}+\frac{\sqrt{5}}{8}}-\sqrt[3]{\frac{\sqrt{5}}{8}-\frac{1}{4}}\)

\(4B=4.\sqrt[3]{\frac{1}{4}+\frac{\sqrt{5}}{8}}-4.\sqrt[3]{\frac{\sqrt{5}}{8}-\frac{1}{4}}\)

\(4B=\sqrt[3]{64.\left(\frac{1}{4}+\frac{\sqrt{5}}{8}\right)}-\sqrt[3]{64.\left(\frac{\sqrt{5}}{8}-\frac{1}{4}\right)}\)

\(4B=\sqrt[3]{16+8\sqrt{5}}-\sqrt[3]{5\sqrt{8}-16}\)

\(4B=\sqrt[3]{1+3\sqrt{5}+15+5\sqrt{5}}-\sqrt[3]{-\left(16-5\sqrt{8}\right)}\)

\(4B=\sqrt[3]{\left(1+\sqrt{5}\right)^3}-\sqrt[3]{-\left(1-3\sqrt{5}+15-5\sqrt{5}\right)}\)

\(4B=1+\sqrt{5}-\sqrt[3]{-\left(1-\sqrt{5}\right)^3}\)

\(4B=1+\sqrt{5}-\left[-\left(1-\sqrt{5}\right)\right]\)

\(4B=1+\sqrt{5}+1-\sqrt{5}\)

\(4B=2\)

\(B=\frac{1}{2}\)