Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4}{3x7}\)+ \(\frac{5}{7x12}\)+ \(\frac{1}{12x13}\)+ \(\frac{7}{13x20}\)+ \(\frac{3}{20x23}\)
= \(\frac{4}{3}+5\)+\(1+7+\frac{3}{13}\)
=\(4+5+1+7+\frac{1}{13}\)
=\(17+\frac{1}{13}\)
=\(\frac{17}{1}+\frac{1}{13}=\frac{221+1}{13}=\frac{222}{13}\)
\(=\frac{3}{4}\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{41.45}\right)\)
\(=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=\frac{3}{4}\times\frac{8}{45}\)
\(=\frac{2}{15}\)
sửa lại : \(\frac{37\cdot13-3}{24+37\cdot12}\)
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
\(x-\left(\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x-\frac{40}{55}=\frac{3}{11}\)
\(x=\frac{3}{11}+\frac{40}{55}\)
\(x=\frac{55}{55}=1\)
nha.
\(\frac{37.\left(15+1\right)-17}{37.15+20}\)= \(\frac{37.15+37-17}{37.15+20}\)=\(\frac{37.15+20}{37.15+20}\) =1
dễ quá
468/468 hay 1