Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{35\left(27^8+2.9^{11}\right)}{15\left(81^6-12.3^{19}\right)}\)= \(\frac{35\left(\left(3^3\right)^8+2.\left(3^2\right)^{11}\right)}{15\left(\left(3^4\right)^6-4.3.3^{19}\right)}\)= \(\frac{35\left(3^{24}+2.3^{22}\right)}{15\left(3^{24}-4.3^{20}\right)}\)= \(\frac{35\left(3^{22}.3^2+2.3^{22}\right)}{15\left(3^{20}.3^4-4.3^{20}\right)}\)= \(\frac{35\left(3^{22}.\left(9+2\right)\right)}{15\left(3^{20}.\left(81-4\right)\right)}\)= \(\frac{35\left(3^{22}.11\right)}{15\left(3^{20}.77\right)}\)= \(\frac{5.7.3^{22}.11}{5.3.3^{20}.7.11}\)= \(\frac{3^{22}}{3.3^{20}}\)= \(\frac{3^{20}.3.3}{3.3^{20}}\)= \(\frac{3}{1}\)= 3
\(\frac{35.\left(27^8+2.9^{11}\right)}{15\left(81^6-12.3^{19}\right)}=\frac{5.7\left(3^{24}+2\cdot3^{22}\right)}{3.5\left(3^{24}-2^2.3^{20}\right)}\)
Bài 1:
\(\frac{35(27^8+2.9^{11})}{15(81^6-12.3^{19})}=\frac{5.7(3^{24}+2.3^{22})}{3.5(3^{24}-2^2.3^{20})}\\
=\frac{5.7.3^{22}(3^2+2)}{3.5.3^{20}(3^4-2^2)}\\
=\frac{5.7.3^{22}.7}{3.5.3^{20}.7.11}\\
=\frac{7.3}{11}=\frac{21}{11}\)
Bài 2:
a. $(2x+1)(y-5)=10$
Với $x,y$ tự nhiên thì $2x+1$ là số tự nhiên lẻ và $y-5$ là số nguyên.
Mà tích của chúng bằng $10$ nên ta xét các TH sau:
TH1: $2x+1=1, y-5=10\Rightarrow x=0; y=15$
TH2: $2x+1=5, y-5=2\Rightarrow x=2; y=7$
b.
$x(y+2)-y=5$
$x(y+2)-(y+2)=3$
$(x-1)(y+2)=3$
Với $x,y$ tự nhiên thì $y+2$ là số tự nhiên, $x-1$ là số nguyên. Mà tích của chúng bằng $3$ nên ta xét các TH sau:
TH1:
$y+2=1, x-1=3\Rightarrow y=-1, x=4$ (loại vì $y=-1$ không là stn)
TH2:
$y+2=3, x-1=1\Rightarrow y=1, x=2$
a) Ta có: \(\frac{-1}{12}-\left(2\frac{5}{8}-\frac{1}{3}\right)\)
\(=-\frac{1}{12}-\frac{21}{8}+\frac{1}{3}\)
\(=\frac{-6}{72}-\frac{189}{72}+\frac{24}{72}\)
\(=-\frac{19}{8}\)
b) Ta có: \(-1,75-\left(\frac{-1}{9}-2\frac{1}{18}\right)\)
\(=\frac{-7}{4}+\frac{1}{9}+\frac{37}{18}\)
\(=\frac{-63}{36}+\frac{4}{36}+\frac{74}{36}\)
\(=\frac{5}{12}\)
c) Ta có: \(\frac{2}{5}+\frac{-4}{3}+\frac{-1}{2}\)
\(=\frac{12}{30}+\frac{-40}{30}+\frac{-15}{30}\)
\(=-\frac{43}{30}\)
d) Ta có: \(\frac{3}{12}-\left(\frac{6}{15}-\frac{3}{10}\right)\)
\(=\frac{3}{12}-\frac{6}{15}+\frac{3}{10}\)
\(=\frac{15}{60}-\frac{24}{60}+\frac{18}{60}\)
\(=\frac{3}{20}\)
e) Ta có: \(\left(8\frac{5}{11}+3\frac{5}{8}\right)-3\frac{5}{11}\)
\(=\frac{93}{11}+\frac{29}{8}-\frac{38}{11}\)
\(=5+\frac{29}{8}=\frac{40}{8}+\frac{29}{8}=\frac{69}{8}\)
f) Ta có: \(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
\(=\frac{4}{9}\cdot\left(-7\right)+\frac{59}{9}\cdot\left(-7\right)\)
\(=\left(-7\right)\cdot\left(\frac{4}{9}+\frac{59}{9}\right)=\left(-7\right)\cdot7=-49\)
g) Ta có: \(\frac{-1}{4}\cdot13\frac{9}{11}-0,25\cdot6\frac{2}{11}\)
\(=\frac{-1}{4}\cdot\frac{152}{11}+\frac{-1}{4}\cdot\frac{68}{11}\)
\(=\frac{-1}{4}\cdot\left(\frac{152}{11}+\frac{68}{11}\right)=-\frac{1}{4}\cdot20=-5\)
h) Ta có: \(5\frac{27}{5}+\frac{27}{23}+0,5-\frac{5}{27}+\frac{16}{23}\)
\(=\frac{52}{5}+\frac{27}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)
\(=\frac{52}{5}+\frac{43}{23}+\frac{1}{2}-\frac{5}{27}\)
\(=\frac{64584}{6210}+\frac{11610}{6210}+\frac{3105}{6210}-\frac{1150}{6210}\)
\(=\frac{78149}{6210}\)
i) Ta có: \(\frac{3}{8}\cdot27\frac{1}{5}-51\frac{1}{5}\cdot\frac{3}{8}+19\)
\(=\frac{3}{8}\cdot\frac{136}{5}-\frac{3}{8}\cdot\frac{206}{5}+\frac{3}{8}\cdot\frac{152}{3}\)
\(=\frac{3}{8}\cdot\left(\frac{136}{5}-\frac{206}{5}+\frac{152}{3}\right)=\frac{3}{8}\cdot\frac{110}{3}\)
\(=\frac{55}{4}\)
A/ \(\left(15-6\frac{13}{18}\right):11\frac{1}{27}-2\frac{1}{8}:1\frac{11}{40}\)
\(=\left(15-\frac{121}{18}\right):\frac{298}{27}-\frac{17}{8}:\frac{51}{40}\)
\(=\left(\frac{270}{18}-\frac{121}{18}\right):\frac{298}{27}-\frac{17}{8}:\frac{51}{40}\)
\(=\frac{149}{18}:\frac{298}{27}-\frac{17}{8}:\frac{51}{40}\)
\(=\frac{3}{4}-\frac{5}{3}\)
\(=\frac{9}{12}-\frac{20}{12}\)\(=-\frac{11}{12}\)
B/ \(\left(-3,2\right)\cdot-\frac{15}{64}+\left(0,8-2\frac{4}{15}\right):3\frac{2}{3}\)
\(=\left(-3,2\right)\cdot-\frac{15}{64}+\left(0,8-\frac{34}{15}\right):\frac{11}{3}\)
\(=-\frac{3,2}{1}\cdot-\frac{15}{64}+\left(0,8-\frac{34}{15}\right):\frac{11}{3}\)
\(=\frac{48}{64}+\left(0,8-\frac{34}{15}\right):\frac{11}{3}\)
\(=\frac{3}{4}+\left(\frac{12}{15}-\frac{34}{15}\right):\frac{11}{3}\)
\(=\frac{3}{4}+\left(-\frac{22}{15}\right):\frac{11}{3}\)
\(=\frac{3}{4}+\left(-\frac{2}{5}\right)\)
\(=\frac{15}{20}+\left(-\frac{8}{20}\right)\)
\(=\frac{7}{20}\)
\(\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{15}\right)+....+\left(x+\frac{1}{575}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(13x+\left(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{23.25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(13x+\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{25}\right)=11x+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(2x+\frac{12}{25}=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
Đặt \(A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)
\(3A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\)
\(3A-A=1-\frac{1}{3^5}=\frac{242}{243}=2A\)
=> \(A=\frac{121}{243}\)
=> \(2x+\frac{12}{25}=\frac{121}{243}\)
=> \(2x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)
=> x = ......