Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{9999}{10000}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100.100}\)
=\(\frac{1.3.2.4.3.5....999.101}{2.2.3.3.4.4....100.100}=\frac{1.101}{2.100}=\frac{101}{200}\)
\(C=\frac{3.8.15....80.99}{4.9.16.81.100}\)
\(=\frac{1.3.2.4.3.5...8.10.9.11}{2.2.3.3.4.4...9.9.10.10}\)
\(=\frac{\left(1.2.3....9\right).\left(3.4.5...10.11\right)}{\left(2.3.4.5...10\right).\left(2.3.4...10\right)}\)
\(=\frac{11}{10}\)
trả lời
c=\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{99}{100}\)
C=\(\frac{3.8.15....99}{4.9.16.100}\)
C=\(\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4....10.10}\)
C=\(\frac{\left(1.2.....9\right)}{2.3....10}.\left(\frac{3.4....11}{2.3...10}\right)\)
C=\(\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
a, \(A=\frac{12}{3.7}+\frac{12}{7.11}+...+\frac{12}{195.199}\)
\(=3.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{195.199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{195}-\frac{1}{199}\right)\)
\(=3.\left(\frac{1}{3}-\frac{1}{199}\right)\)
\(=3.\left(\frac{199}{597}-\frac{3}{597}\right)\)
\(=3.\frac{196}{597}\)
\(=\frac{196}{199}\)
\(\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{9999}{10000}\)
\(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\frac{3\cdot5}{4^2}\cdot...\cdot\frac{99\cdot101}{100^2}\)
\(=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(99\cdot101\right)}{2^2\cdot3^2\cdot4^2\cdot...\cdot100^2}\)
\(=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(=2\cdot101=202\)
a) \(\frac{\left(-1\right)}{4}^2+\frac{3}{8}.\left(\frac{-1}{6}\right)-\frac{3}{16}:\left(\frac{-1}{2}\right)=\left(\frac{-1}{4}\right)^2+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\left(\frac{1}{16}\right)+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\frac{5}{272}-\left(\frac{-3}{8}\right)=\frac{107}{272}\)
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
=\(\left(\frac{3}{4}\right)^{4032}.\left(\frac{4}{3}\right)^{4030}.\frac{4}{3}\)
=
\(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
\(=\frac{1.2.3.4...30.31}{2.2.2.3.2.4.2.5...2.31.2.32}\)
\(=\frac{1.2.3.4...30.31}{2^{31}.\left(2.3.4.5...31\right).32}\)
\(=\frac{1}{2^{31}.32}\)
\(=\frac{1}{2^{31}.2^5}\)
\(=\frac{1}{2^{36}}\)