Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x^2 + 3 = 2x(x + 4) - 7
<=> 2x^2 + 3 = 2x^2 + 8x - 7
<=> 2x^2 - 2x^2 - 8x = - 7 - 3
<=> -8x = -10
<=> x = -10/-8 = 5/4
b) 4x^2 - 12x + 5 = 0
<=> 4x^2 - 2x - 10x + 5 = 0
<=> 2x(2x - 1) - 5(2x - 1) = 0
<=> (2x - 5)(2x - 1) = 0
<=> 2x - 5 = 0 hoặc 2x - 1 = 0
<=> x = 5/2 hoặc x = 1/2
c) |5 - 2x| = 1 - x
<=> \(\hept{\begin{cases}5-2x\text{ nếu }5-2x\ge0\Leftrightarrow x\ge\frac{5}{2}\\-\left(5-2x\right)\text{ nếu }5-2x< 0\Leftrightarrow x< \frac{5}{2}\end{cases}}\)
+) nếu x >= 5/2, ta có:
5 - 2x = 1 - x
<=> -2x + 1 = 1 - 5
<=> -x = -4
<=> x = 4 (tm)
+) nếu x < 5/2, ta có:
-(5 - 2x) = 1 - x
<=> -5 + 2x = 1 - x
<=> 2x + 1 = 1 + 5
<=> 3x = 6
<=> x = 2 (ktm)
d) \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}-\frac{2x+3}{x^2+x+1}\) ; ĐKXĐ: x # 1
<=> \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x+3}{x^2+x+1}\)
<=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
<=> 2(x^2 + x + 1) = (2x - 1)(2x + 1) - (2x + 3)(x - 1)
<=> 2x^2 + 2x + 2 = 2x^2 - x + 2
<=> 2x^2 - 2x^2 + 2x - x = 2 - 2
<=> x = 0
mạn phép vô đây để kiếm câu trả lời
\(2x^2+3=2x\left(x+4\right)-7\)
\(< =>2x^2+3=2x.x+4.2x-7\)
\(< =>2x^2+3=2x^2+8x-7\)
\(< =>2x^2+3-2x^2=8x-7\)
\(< =>\left(2x^2-2x^2\right)-8x=-7-3\)
\(< =>-8x=-10< =>8x=10\)
\(< =>x=10:8=\frac{10}{8}=\frac{5}{4}\)
a/ \(\Leftrightarrow x\left(8x^3+12x^2+6x+1\right)=0\Leftrightarrow x\left[\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\right]=0\)
\(\Leftrightarrow x\left(2x+1\right)^3=0\Rightarrow\orbr{\begin{cases}x=0\\\left(2x+1\right)^3=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
b/ \(\Leftrightarrow4x^2-\left(4x^2-9\right)=9x\Leftrightarrow9x=9\Leftrightarrow x=1\)
c/ Từ \(\frac{1}{a}-\frac{1}{b}=1\Rightarrow a-b=-ab\) thay vào biểu thức
\(\Rightarrow\frac{-ab-2ab}{-2ab+3ab}=\frac{-3ab}{ab}=-3\)
\(a,\frac{7}{x+2}=\frac{3}{x-5}\)
\(\Rightarrow7\left(x-5\right)=3\left(x+2\right)\)
\(\Rightarrow7x-35=3x+6\)
\(\Rightarrow7x-3x=6+35\)
\(\Rightarrow4x=41\)
\(\Rightarrow x=\frac{41}{4}\)
\(b,\frac{2x+5}{2x}-\frac{x}{x+5}=0\)
\(\Rightarrow\frac{2x+5}{2x}=\frac{x}{x+5}\)
\(\Rightarrow\left(2x+5\right)\left(x+5\right)=2x\cdot x\)
\(\Rightarrow2x^2+10x+5x+25=2x^2\)
\(\Rightarrow2x^2+15x+25-2x^2=0\)
\(\Rightarrow15x+25=0\)
\(\Rightarrow15x=-25\)
\(\Rightarrow x=\frac{-5}{3}\)
\(c,\frac{12x+1}{11x-4}+\frac{10x-4}{9}=\frac{20x+17}{18}\)
\(\Rightarrow\frac{12x+1}{11x-4}=\frac{20x+17}{18}-\frac{10x-4}{9}\)
\(\Rightarrow\frac{12x+1}{11x-4}=\frac{25}{18}\)
\(\Rightarrow\left(12x+1\right)\cdot18=25\cdot\left(11x-4\right)\)
\(\Rightarrow216x+18=275x-100\)
\(\Rightarrow216x-275x=-100-18\)
\(\Rightarrow-59x=-118\)
\(\Rightarrow x=2\)
\(\frac{2x}{x-14}-\frac{12x}{2x-28}=0\left(x\ne14\right)\)
\(\Leftrightarrow\frac{4x-12x}{2x-28}=0\Leftrightarrow4x-12x=0\Leftrightarrow-8x=0\Leftrightarrow x=0\) (thoả mãn x khác 14)
Ta có
\(\frac{2x}{x-14}\)-- \(\frac{12x}{2x-28}\)=0
<=>\(\frac{4x}{2x-28}\)=\(\frac{12x}{2x-28}\)
<=>4x=12x
<=>x=0
Vậy phương trình có x=0