Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)
Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)
Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)
b) Tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)
hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)
Ta có bảng:
x+3 | 1 | -1 | 2 | -2 |
x | -2 | -4 | -1 | -5 |
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
\(\frac{2x^2}{x^2+1}=\frac{2x^2+2-2}{x^2+1}=\frac{2\left(x^2+1\right)-2}{x^2+1}\)
=> 2 chia hết cho x2+1
Vì x2+1 \(\ge0\)=> x2+1\(\inƯ\left(2\right)=\left\{1;2\right\}\)
Nếu x2+1=1 <=> x2=0 <=> x=0
Nếu x2+1=2 <=> x2=1 (loại)
vậy x=0