K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

\(\frac{2x^2-x-1}{x^2-13x+1}=\frac{2x^2-2x+x-1}{x^2-13x+1}=\frac{2x\left(x-1\right)+x-1}{x^2-13x+1}=\frac{\left(2x+1\right)\left(x-1\right)}{x^2-13x+1}\)

Đề hơi lạ 

19 tháng 11 2018

Khôi Bùi  , hơ hơ 

13 tháng 2 2020

a) x2 - 2 = ( 2x + 3 ) ( x + 5 ) + 23

⇔ x2 - 2 - 2x2 - 13x - 15 - 23 = 0

⇔ - x2 - 13x - 40 = 0

⇔ ( x + 5 ) ( x + 8 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-8\end{matrix}\right.\)

b) \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\Leftrightarrow\frac{\left(x+7\right)-\left(x+4\right)}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=3\times18\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

13 tháng 2 2020

\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{3}{54}\)

\(\Rightarrow\left(x+4\right)\left(x+7\right)=54\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

Ta có \(\Delta=11^2+4.26=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+15}{2}=2\\x=\frac{-11-15}{2}=-13\end{cases}}\)

Vậy tập nghiệm S =  {2;-13}

AH
Akai Haruma
Giáo viên
8 tháng 2 2020

Lời giải:

a) ĐK: $x\neq 8$

PT \(\Leftrightarrow \frac{3}{2(x-8)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3(x-8)}\)

\(\Leftrightarrow \frac{36}{24(x-8)}+\frac{24(3x-20)}{24(x-8)}+\frac{3(x-8)}{24(x-8)}=\frac{8(13x-102)}{24(x-8)}\)

\(\Rightarrow 36+24(3x-20)+3(x-8)=8(13x-102)\)

\(\Leftrightarrow x=12\) (t/m)

b)

ĐK: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{(x-1)(x-2)}{(x+2)(x-2)}-\frac{x(x+2)}{(x-2)(x+2)}=\frac{5x-2}{(2-x)(x+2)}=\frac{2-5x}{(x-2)(x+2)}\)

\(\Rightarrow (x-1)(x-2)-x(x+2)=2-5x\)

$\Leftrightarrow 0=0$

Vậy PT có nghiệm $x\in\mathbb{R}$ và $x\neq \pm 2$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:
a) ĐKXĐ: $x\neq \pm 3; x\neq 0$

\(A=\frac{3-x}{x+3}.\frac{(x+3)^2}{(x-3)(x+3)}.\frac{x+3}{3x^2}\)

\(=-\frac{x+3}{3x^2}\)

b)

Với $x=-\frac{1}{2}\Rightarrow A=-\frac{-\frac{1}{2}+3}{3(\frac{-1}{2})^2}=\frac{-10}{3}$

c)

Để $A< 0\Leftrightarrow -\frac{x+3}{3x^2}< 0$

$\Rightarrow x+3>0\Rightarrow x>-3$

Vậy $x>-3; x\neq 3; x\neq 0$

21 tháng 7 2019
https://i.imgur.com/jTzVBzQ.jpg
21 tháng 7 2019
https://i.imgur.com/1Xvpjty.jpg
11 tháng 6 2018

1/

a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)

\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)

\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)

\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)

\(D=x\)

b/ Mình xin sửa lại đề:

Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)

Tại x = 12

\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)

\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)

\(E\left(x\right)=2012-x\)

\(E\left(x\right)=2000\)

2/

a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

<=> \(2x^2-10x-3x-2x^2=26\)

<=> \(-13x=26\)

<=> \(x=-2\)

b/ Bạn vui lòng coi lại đề.

3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

\(D=-10\)

Vậy giá trị của D không phụ thuộc vào x (đpcm)

11 tháng 6 2018

Giúp mik vs^^

9 tháng 6 2020

a, 2(4x - 7 ) = 3(x + 1) + 18

⇌ 8x -14 = 3x + 3 + 18

⇌ 5x = 35 ⇌ x = 7

→ S = \(\left\{7\right\}\)

b, ( 2x - 1 )2 - 4x ( x - 3 ) = -11

⇌ 4x2 - 2x + 1 - 4x2 + 12 = -11

⇌ 10x = -12

⇌ x = \(-\frac{12}{10}\)

→ S = \(\left\{-\frac{12}{10}\right\}\)

c, ( 2x - 5 )2 - ( x + 2 )2 = 0

⇌ ( 2x - 5 -x + 2 )2 = 0

⇌ ( x - 3 )2 = 0

⇌ x - 3 = 0 ⇌ x = 3

→ S = \(\left\{3\right\}\)

d, ( x - 6 ) ( x + 1 ) = 2(x + 1)

⇌ ( x - 6 - 2 ) ( x+ 1) = 0

⇌ x2 - 7x - 8 =0

⇌ ( x - 8 ) ( x + 1 ) = 0

\(\left\{{}\begin{matrix}x-8=0\\x+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-1\end{matrix}\right.\)

→ S = \(\left\{8;-1\right\}\)

e, \(\frac{x-3}{2}=2-\frac{1-2x}{5}\)

⇌ 5( x - 3) = 20 - 2(1 - 2x)

⇌ 5x - 4x = 15 + 20 + 2

⇌ x = 37

→ S = \(\left\{37\right\}\)

g, \(\frac{3x+2}{2}+\frac{5-2x}{3}=\frac{11}{6}\)

⇌ 3(3x + 2) + 2(5 - 2x) = 11

⇌ 6x + 6 + 10 - 4x = 11

⇌ 2x = -5

⇌ x = \(-\frac{5}{2}\)

→ S = \(\left\{-\frac{5}{2}\right\}\)

h, \(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{9x-66}{x^2-4}\)

⇌ (x - 2)2 - 3(x - 2) = 9x - 66

⇌ x2 - 4x + 4 - 3x - 6 = 9x - 66

⇌ x2 -16 + 64 = 0

⇌ (x - 8)2 = 0

⇌ x - 8 = 0

⇌ x = 8

→ S = \(\left\{8\right\}\)

11 tháng 6 2020

ban lam not ho minh hai cau cuoi nha