\(\frac{2}{\frac{1}{a}+\frac{1}{b}}\) là trung bình điều hoà của a và B. CMR trung bình đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Bạn xem lời giải ở đây nhé:

Câu hỏi của AgustD - Toán lớp 9 - Học toán với OnlineMath

22 tháng 5 2018

\(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\Rightarrow2>=\frac{4}{a+b}\Rightarrow a+b>=2\)   (bđt cauchy schwarz adangj engel) 

\(a^4+b^2>=2\sqrt{a^4b^2}=2a^2b;a^2+b^4>=2\sqrt{a^2b^4}>=2ab^2;\frac{1}{a}+\frac{1}{b}>=2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}\Rightarrow2>=\frac{2}{\sqrt{ab}}\Rightarrow ab>=1\)(bđt cosi)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}+\frac{1}{a^2+b^4+2a^2b}< =\frac{1}{2a^2b+2ab^2}+\frac{1}{2ab^2+2a^2b}=\frac{2}{2a^2b+2ab^2}=\frac{2}{2ab\left(a+b\right)}\)

\(=\frac{1}{ab\left(a+b\right)}< =\frac{1}{1\cdot2}=\frac{1}{2}\)

dấu = xảy ra khi a=b=1

21 tháng 2 2021

a + b + c = 0

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> ab + bc + ca = \(\frac{a^2+b^2+c^2}{2}\)

=> \(\left(ab+bc+ca\right)^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)

=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2a^2bc+2ab^2c+2abc^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)

=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)

=> \(\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=\left(\frac{a^2+b^2+c^2}{2}\right)^2\)(vì a + b + c = 0)

Lại có \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{a^2b^2+b^2c^2+a^2c^2}{a^2b^2c^2}=\frac{\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2}{\left(abc\right)^2}\)

\(=\frac{\left(\frac{a^2+b^2+c^2}{2}\right)^2}{\left(abc\right)^2}=\left(\frac{\frac{a^2+b^2+c^2}{2}}{abc}\right)^2=\left(\frac{a^2+b^2+c^2}{2abc}\right)^2\)

=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)là bình phương của 1 số hữu tỉ

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

23 tháng 2 2015

Câu 1: \(P=\frac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\frac{x^2+x+1+2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{x^2+x+1}{3\left(x^2+x+1\right)}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)

\(\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\), với mọi x. Dấu = xảy ra khi x- 1 =0 <=> x =1

Vậy Min P = 1/3 <=> x = 1

Tìm Max : \(P=\frac{3x^2+3x+3-2\left(x^2+2x+1\right)}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\),với mọi x, 

Dấu = xảy ra <=> x +1 = 0 <=> x = - 1

Vậy max P = 3 <=> x = -1