Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : A=1/2+1/4+..+1/1024
=> A=1/21+1/22+..+1/210
=> A.2=(1/21+1/22+..+1/210).2
=> A.2=1+1/21+1/22+..+1/29
=> 2A-A=(1+1/21+1/22+..+1/29)-(1/21+1/22+..+1/210)
=> A=1-1/210
Sửa lại là 1/256 nha
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{128}-\frac{1}{256}\right)\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-\left(\frac{1}{8}-\frac{1}{8}\right)-...-\left(\frac{1}{128}-\frac{1}{128}\right)-\frac{1}{256}\)
\(=1-\frac{1}{256}=\frac{255}{256}\)
\(=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{128}-\frac{1}{256}\right)\)
\(=1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-\left(\frac{1}{8}-\frac{1}{8}\right)-...-\left(\frac{1}{128}-\frac{1}{128}\right)-\frac{1}{256}\)
\(=1-\frac{1}{256}=\frac{255}{256}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+....+\frac{1}{128}-\frac{1}{256}\)
\(A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
**** cho mh nha bn . thanks
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}...-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}\)
\(A=1-0+0+0+...+0+0-\frac{1}{256}\)
\(A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
\(A\cdot2=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{256}\right)\cdot2\)
\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}\)
\(A\cdot2-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^7}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(A=1-\frac{1}{2^8}\)
\(A=\frac{2^8-1}{2^8}\)
\(A=\frac{255}{256}\)
256 + 399x255/256x399-143
= 256+399x255/(255+1)x399-143
=256+399x255/255x399+399-143
=256+399x255/255x399+256
=1