Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3.5}+\frac{3}{5.8}+\frac{11}{8.19}+\frac{13}{19.32}+\frac{25}{32.57}+\frac{30}{57.87}\)
\(=\frac{5-3}{3.5}+\frac{8-5}{3}+\frac{19-8}{8.19}+\frac{32-29}{19.32}+\frac{57-32}{32.57}+\frac{87-57}{57.87}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{32}+\frac{1}{32}-\frac{1}{57}+\frac{1}{57}-\frac{1}{87}\)
\(=\frac{1}{3}-\frac{1}{87}=\frac{28}{87}\)
\(A=\frac{2}{3.5}+\frac{3}{5.8}+\frac{11}{8.19}+\frac{13}{19.32}+\frac{25}{32.57}+\frac{30}{57.87}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{32}+\frac{1}{32}-\frac{1}{57}+\frac{1}{57}-\frac{1}{87}\)
\(=\frac{1}{3}-\frac{1}{87}=\frac{29}{87}-\frac{1}{87}=\frac{28}{87}\)
\(C=\dfrac{2}{3\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{11}{8\cdot19}+\dfrac{13}{19\cdot32}+\dfrac{25}{32\cdot57}+\dfrac{30}{57\cdot87}\)\(C=\left(\dfrac{5-3}{3\cdot5}\right)+\left(\dfrac{8-5}{5\cdot8}\right)+\left(\dfrac{19-8}{8\cdot19}\right)+\left(\dfrac{32-19}{19\cdot32}\right)+\left(\dfrac{57-32}{32\cdot57}\right)+\left(\dfrac{87-57}{57\cdot87}\right)\)\(C=\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\left(\dfrac{1}{5}-\dfrac{1}{8}\right)+\left(\dfrac{1}{8}-\dfrac{1}{19}\right)+\left(\dfrac{1}{19}-\dfrac{1}{32}\right)+\left(\dfrac{1}{32}-\dfrac{1}{57}\right)+\left(\dfrac{1}{57}+\dfrac{1}{87}\right)\)\(C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}+\dfrac{1}{57}-\dfrac{1}{87}\)\(C=\dfrac{1}{3}-\dfrac{1}{87}=\dfrac{28}{87}\)
\(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(=\frac{1}{5}-\frac{1}{200}\)
\(=\frac{39}{200}\)
1/5-1/8+1/8-1/19+1/19-1/31+1/31-1/101+1/200=1/5-1/200=195/1000=39/200
\(\Rightarrow A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{200}\)
\(\Rightarrow A=\frac{39}{200}\)
vì \(\frac{39}{200}< 1\) nên A < 1
\(A=\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
Áp dụng công thức \(\frac{b-a}{a.b}=\frac{1}{a}-\frac{1}{b}\) với a < b và a khác b khác 0, ta có:
\(A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+...+\frac{1}{101}-\frac{1}{200}\\ =\frac{1}{5}-\frac{1}{200}\\ =\frac{40-1}{200}\\ =\frac{39}{200}\\ \frac{39}{200}< 1\\\Rightarrow A< 1\left(đpcm\right)\)
Chúc bạn học tốt!
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+...+\frac{99}{101.200}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}=\frac{39}{100}\)
\(E=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}\)
\(=\frac{39}{100}\)
Hình như sai đề rồi bạn ơi ! Ở phân số 13/8.19 thì tớ nghĩ phải là 13/19.32 chứ