Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}=\frac{2}{2a-1}.\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.a\sqrt{5}.\left(2a-1\right)=2a\sqrt{5}\)
\(\frac{2}{2a-1}.\sqrt{5x^4\left(1-4a+4a^2\right)}\)
\(=\frac{2}{2a-1}.\sqrt{5x^4\left(2a-1\right)^2}\)
\(=\frac{2}{2a-1}.x^2.\left(2a-1\right).\sqrt{5}\)
\(=2\sqrt{5}x^2\)
\(B=\frac{1}{2a-1}.\sqrt{5a^4\left(2a-1\right)^2}=\sqrt{5}a^2.\frac{\left|2a-1\right|}{2a-1}\)
Nếu \(a>\frac{1}{2}\) thì \(B=\sqrt{5}a^2\)
Nếu \(a< \frac{1}{2}\) thì \(B=-\sqrt{5}a^2\)
\(B=\frac{1}{2a-1}\sqrt{5a^4\left(1-4a+4a^2\right)}\)
\(B=\frac{2\left|a\right|}{2a-1}\sqrt{5\left[1-2.2a+\left(2a\right)^2\right]}\)
\(B=\frac{2a}{2a-1}\sqrt{5\left(1-2a\right)^2}\)
\(B=\frac{2a\left|1-2a\right|}{2a-1}\sqrt{5}\)
\(=\frac{2a\left(2a-1\right)}{2a-1}\sqrt{5}=2a\sqrt{5}\)
\(ĐKXĐ:a\ne\frac{1}{2}\)
\(B=\frac{1}{2a-1}.\sqrt{5a^4.\left(1-4a+4a^2\right)}\)
\(=\frac{1}{2a-1}.\sqrt{5a^4.\left(1-2a\right)^2}\)
\(=\frac{1}{2a-1}.\sqrt{5}.\sqrt{a^4}.\sqrt{\left(1-2a\right)^2}\)
\(=\frac{1}{2a-1}.\sqrt{5}.a^2.\left|1-2a\right|=\frac{\sqrt{5}.a^2.\left|1-2a\right|}{2a-1}\)
+) Nếu \(a< \frac{1}{2}\)\(\Rightarrow\left|1-2a\right|=1-2a=-\left(2a-1\right)\)
\(\Rightarrow B=\frac{-\sqrt{5}.a^2.\left(2a-1\right)}{2a-1}=-\sqrt{5}.a^2\)
+) Nếu \(a>\frac{1}{2}\)\(\Rightarrow\left|1-2a\right|=-\left(1-2a\right)=-1+2a=2a-1\)
\(\Rightarrow B=\frac{\sqrt{5}.a^2.\left(2a-1\right)}{2a-1}=\sqrt{5}.a^2\)
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
a) \(\frac{2}{x^2-y^2}\cdot\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{3}\left(x+y\right)}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)
b) \(\frac{2}{2a-1}\cdot\sqrt{5a^2\left(1-4a+4a^2\right)}=\frac{2}{2a-1}\cdot\sqrt{5a^2\left(1-2a\right)^2}\)
\(=\frac{2}{2a-1}\cdot\sqrt{5}a\left(1-2a\right)=-2\sqrt{5}a\)
Ta có: \(B=\frac{9\sqrt{a}-\sqrt{25a}+\sqrt{4a^3}}{a^2+2a}\)
\(=\frac{9\sqrt{a}-5\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}\)
\(=\frac{\sqrt{a}\left(4+2a\right)}{a\left(a+2\right)}=\frac{2\sqrt{a}\left(a+2\right)}{\sqrt{a}\cdot\sqrt{a}\cdot\left(a+2\right)}\)
\(=\frac{2}{\sqrt{a}}\)
Ta có: \(C=\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right):\frac{1-\sqrt{x}}{2-\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}\left(x-\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{2-\sqrt{x}}{1-\sqrt{x}}\)
\(=\frac{x\sqrt{x}-x+2\sqrt{x}-x\sqrt{x}-x}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{-2x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-2}{\sqrt{x}+1}\)
\(a\ge0\)
\(\frac{2}{2a-1}\sqrt{5a^2}\left(1-4a+4a^2\right)=\frac{2}{2a-1}\sqrt{5a^2}\left(1-2a\right)^2=\frac{2}{2a-1}\sqrt{5a^2}\left(2a-1\right)^2\)
\(=2a\sqrt{5}\left(2a-1\right)\)