\(\frac{2}{2.3}\)+ \(\frac{2}{3.4}\)+....+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

\(\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+........+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+........+\frac{1}{x\left(x+1\right)}=\frac{2008}{4020}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{4020}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2008}{4020}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2008}{4020}\)

\(\frac{1}{x+1}=\frac{1}{2010}\)

=> x + 1 = 2010

=> x = 2010 - 1

=> x = 2009

22 tháng 2 2018

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)

26 tháng 5 2017

b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)

\(B=1-\frac{1}{2015}\)

\(B=\frac{2014}{2015}\)

26 tháng 5 2017

a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}\)

\(=\frac{2014}{2015}\)

còn lại tự giải nha gần giống như phần b thôi cũng thú vị.

ủng hộ nha

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

2 tháng 8 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)

\(1-\frac{1}{x+1}=\frac{4}{5}\)

\(\frac{x}{x+1}=\frac{4}{5}\)

\(\frac{x}{x+1}=\frac{4}{4+1}\)

\(\Rightarrow x=4\)

Vậy x = 4

=))

2 tháng 8 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{4}{5}\)

\(\Leftrightarrow\frac{1}{x-1}=1-\frac{4}{5}\)

\(\Leftrightarrow\frac{1}{x-1}=\frac{1}{5}\)

\(\Leftrightarrow x-1=5\)

\(\Leftrightarrow x=5+1\)

\(\Leftrightarrow x=6\)

~ Rất vui vì giúp đc bn ~ ^_<

26 tháng 2 2018

a)hình như =55

22 tháng 7 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\frac{3}{2}=1\)

\(\Leftrightarrow3x=-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)

Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x=99\)

22 tháng 7 2017

a) => ( x + 1/2 ) . 3 = 1

=> 3x + 3/2 = 1

=> 3x = 1 - 3/2

=> 3x = -1/2

=> x = -1/2 : 3 = -1/6

7 tháng 5 2017

\(P=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+.....+\frac{4033}{\left(2016.2017\right)^2}\)

\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.....+\frac{2017^2-2016^2}{2016^2.2017^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{2016^2}-\frac{1}{2017^2}\)

\(=1-\frac{1}{2017^2}< 11\) (đpcm)

7 tháng 5 2017

Bài này trong đề thi học kì 2 môn Toán lớp 6 trường Amsterdam năm 2016-2017 này. Mình 10 luôn hehe

30 tháng 7 2016

giúp mk nha. mk sẽ k cho bn nào trả lời giúp mk mà đúng

30 tháng 7 2016

 (1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10)*100-[5/2:(x+206/100)]:1/2=89

Đặt A=1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10

      A=1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9+1/9-1/10

      A=1-1/10

      A=9/10

=>(1/1*2+1/2*3+1/3*4+...+1/8*9+1/9*10)*100-[5/2:(x+206/100)]:1/2=89

=9/10*100-[5/2:(x+206/100)]:1/2=89

  90-[5/2:(x+206/100)]:1/2=89

  5/2:(x+206/100):1/2=90-89

  5/2:(x+206/100):1/2=1

   x+206/100:1/2=5/2:1

   x+206/100:1/2=5/2

   x+103/25=5/2

   x=5/2-103/25

   x=-81/50