Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016-x}{2017}\)+\(\frac{2017-x}{2016}\)+2=\(\frac{2016}{2017-x}\)+\(\frac{2017}{2016-x}\)+2
\(\frac{4033-x}{2017}\)+\(\frac{4033-x}{2016}\)=\(\frac{4033-x}{2017-x}\)+\(\frac{4033-x}{2016-x}\)
(4033-x)(\(\frac{1}{2017}\)+\(\frac{1}{2016}\)-\(\frac{1}{2017-x}\)-\(\frac{1}{2016-x}\))=0
=>\(\hept{\begin{cases}4033-x=0\\\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2017-x}-\frac{1}{2016-x}\end{cases}}=0\)
=>x=4033
x=0
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
\(a)\) \(E=\frac{2016^3-1}{2016^2+2017}\)
\(E=\frac{\left(2016-1\right)\left(2016^2+2016.1+1^2\right)}{2016^2+2017}\)
\(E=\frac{2015\left(2016^2+2017\right)}{2016^2+2017}\)
\(E=2015\)
Chúc bạn học tốt ~
Cho A=\(\frac{2017-2016}{2017+2016}\)và B=\(\frac{2017^2-2016^2}{2017^2+2016^2}\)
Hãy so sánh A và B
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
a) \(-7x^2+10x-2016=-7\left(x^2-\frac{10x}{7}\right)-2016=-7\left(x^2-2.x.\frac{5}{7}+\frac{25}{49}\right)+\frac{25}{49}.7-2016=-7\left(x-\frac{5}{7}\right)^2-\frac{14087}{7}\le-\frac{14087}{7}\)Vậy Max = \(-\frac{14087}{7}\Leftrightarrow x=\frac{5}{7}\)
b) \(\frac{x+5}{11}+\frac{x+2010}{6}\ge\frac{x-1}{2017}+\frac{x+6}{2010}\)
\(\Leftrightarrow\frac{x}{2011}+\frac{x}{6}+\frac{5}{2011}+335\ge\frac{x}{2017}+\frac{x}{2010}-\frac{1}{2017}+\frac{1}{335}\)
\(\Leftrightarrow x\left(\frac{1}{2011}+\frac{1}{6}-\frac{1}{2017}-\frac{1}{2010}\right)\ge\frac{1}{335}-\frac{1}{2017}-\frac{5}{2011}-335\)
\(\Leftrightarrow\frac{677389259}{4076467935}x\ge\frac{-455205582048}{1358822645}\) \(\Leftrightarrow x\ge-2016\)
Câu b) còn cách khác nữa bạn nhé. Mình làm cách này "xù" quá ^^
\(\frac{2^{2016}+2^{2016}}{-2^{2017}}=\frac{2.2^{2016}}{-2^{2017}}=\frac{2^{2017}}{-2^{2017}}=-1\)
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)
2^2016+2^2016/-2^2017
=2^2016(1+1)/-2^2017
=2^2017/-2^2017
=-1
-1 mk làm r bạn ạ