\(\frac{2009\cdot2009+2010}{2008\cdot2011+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

=1 nha ban

30 tháng 3 2017

\(=\frac{2008+2009.2010}{2010.\left(2009+2\right)-2012}\)

\(=\frac{2009.2010+2008}{2010.2009+2010.2-2012}\)

\(=\frac{2008+2009.2010}{2008+2009.2010}=1\)

14 tháng 6 2017

lết quả là :

   \(\frac{-1}{2009}\)

     ai thấy đúng thì tk nha

14 tháng 6 2017

-1/2009

9 tháng 6 2017

\(\frac{2008.2009+2000}{2009.2010-2018}\)

\(=\frac{2008.\left(2010-1\right)+2010}{\left(2008+1\right).2010-2018}\)

\(=\frac{2008.2010-2008+2010}{2008.2010+2010-2018}\)

\(=\frac{2008.2010+2}{2008.2010-18}\)

Mình nghĩ bài này sai đề, nếu đề là 2018 -> 2008 thì bảo mình, mình làm lại cho

9 tháng 6 2017

2000

mình nghĩ là thế !

25 tháng 8 2017

\(\frac{2011.2010-1}{2009.2011+2010}=\frac{2011.\left(2009+1\right)-1}{2009.2011+2010}\)

\(=\frac{2011.2009+2011-1}{2009.2011+2010}\)

\(=\frac{2011.2009+2010}{2009.2011+2010}\)

\(=1\)

Nhớ k vs kp với mik nhé,mấy man!

28 tháng 7 2018

đổi k ko

có nhầm đề không vậy phải là 2010-

12 tháng 8 2015

\(\frac{2009.2009+2008}{2009.2009+2009}=\frac{2009.2009+2009}{2009.2009+2009}-\frac{1}{2009.2009+2009}=1-\frac{1}{2009.2009+2009}\)

\(\frac{2009.2009+2009}{2009.2009+2010}=\frac{2009.2009+2010}{2009.2009+2010}-\frac{1}{2009.2009+2010}=1-\frac{1}{2009.2009+2010}\)

\(\text{Vì }2009.2009+2009<2009.2009+2010\text{ nên: }\frac{1}{2009.2009+2009}>\frac{1}{2009.2009+2010}\)

\(\text{Hay }1-\frac{1}{2009.2009+2009}<\frac{1}{2009.2009+2010}\)

\(\text{Vậy }\frac{2009.2009+2008}{2009.2009+2009}<\frac{2009.2009+2009}{2009.2009+2010}\)

12 tháng 8 2015

\(\frac{2009.2009+2009}{2009.2009+2010}=\frac{2009.2009+2008+1}{2009.2009+2009+1}\)

Đặt 2009.2009+2008 là a; 2009.2009+2009 là b. Ta so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)

Qui đồng mẫu số 2 phân số trên

\(\frac{a}{b}=\frac{a\left(b+1\right)}{b\left(b+1\right)}=\frac{a.b+a}{b.\left(b+1\right)}\)

\(\frac{a+1}{b+1}=\frac{\left(a+1\right).b}{b\left(b+1\right)}=\frac{a.b+b}{b\left(b+1\right)}\)

Vì 2008 < 2009

=> 2009.2009+2008 < 2009.2009+2009

=> a < b

=> a.b+a < a.b+b

=> \(\frac{a.b+a}{b.\left(b+1\right)}<\frac{a.b+b}{b.\left(b+1\right)}\)

=> \(\frac{a}{b}<\frac{a+1}{b+1}\)

=> \(\frac{2009.2009+2008}{2009.2009+2009}<\frac{2009.2009+2009}{2009.2009+2010}\)

28 tháng 7 2016

\(a+b+c+d=\frac{2008}{2009}+\frac{2009}{2008}+\frac{1}{2009}+\frac{2007}{2008}\\ =\frac{2009}{2009}+\frac{4016}{2008}=1+2=3\)

31 tháng 7 2020

\(\frac{2x-4,36}{0,125}=0,25.42,9-11,7.0,25+0,25.0,8\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.\left(42,9-11.7+0,8\right)\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.32\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=8\)

\(\Leftrightarrow2x-4,36=1\)

\(\Leftrightarrow2x=5,36\)

\(\Leftrightarrow x=2,68\)

b) \(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)

\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)

\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)

\(\Leftrightarrow N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)

Bài 1:

a)\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot42,9-11,7\cdot0,25+0,25\cdot0,8\)

\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot\left(42,9-11,7+0,8\right)\)

\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot32\)

\(\frac{2\cdot x-4,36}{0,125}=8\)

\(2\cdot x-4,36=8\cdot0,125\)

\(2\cdot x-4,36=1\)

\(2\cdot x=1+4,36\)

\(2\cdot x=5,36\)

\(x=\frac{5,36}{2}=2,68\)

b) \(N=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...+\frac{1}{2005\cdot2010}\)

\(4N=\frac{4}{1\cdot5}+\frac{4}{5\cdot10}+\frac{4}{10\cdot15}+\frac{4}{15\cdot20}+...+\frac{4}{2005\cdot2010}\)

\(4N=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\)

\(4N=1-\frac{1}{2010}=\frac{2009}{2010}\)

\(N=\frac{2009}{2010}\div4=\frac{2009}{8040}\)

Bài 2:

a) ( x + 5,2 ) : 3,2 = 4,7 ( dư 0,5 )

\(x+5,2=4,7\cdot3,2+0,5\)

\(x+5,2=15,54\)

\(x=15,54-5,2=10,34\)

b)\(A=\frac{4047991-2010\cdot2009}{4050000-2011\cdot2009}\)

\(A=\frac{4047991-2010\cdot2009}{4050000-2009-2010\cdot2009}\)

\(A=\frac{4047991-2010\cdot2009}{4047991-2010\cdot2009}=1\)

Bài 3:

a) \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)

\(x\cdot\left(104,5-14,1+9,6\right)=25\)

\(x\cdot100=25\)

\(x=\frac{25}{100}=\frac{1}{4}=0,25\)

b) \(T=\frac{2009\cdot2010+2000}{2011\cdot2010-2020}\)

\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+4020-2020}\)

\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+2000}=1\)