Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a) \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{2-1}{\sqrt{1}+\sqrt{2}}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}=\sqrt{2}-\sqrt{1}\)
Tương tự ta có: \(\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\);
\(\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\); ............. ; \(\frac{1}{\sqrt{2024}+\sqrt{2025}}=\sqrt{2025}-\sqrt{2024}\)
\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{2025}-\sqrt{2024}\)
\(=\sqrt{2025}-\sqrt{1}=45-1=44\)
Bài 4:
\(M=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\frac{\sqrt{2-2\sqrt{2}+1}}{\sqrt{9-2.3.2\sqrt{2}+8}}-\frac{\sqrt{2+2\sqrt{2}+1}}{\sqrt{9+2.3.2\sqrt{2}+8}}\)
\(=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(3-\sqrt{8}\right)^2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{\left(3+\sqrt{8}\right)^2}}\)
\(=\frac{\left|\sqrt{2}-1\right|}{\left|3-\sqrt{8}\right|}-\frac{\left|\sqrt{2}+1\right|}{\left|3+\sqrt{8}\right|}=\frac{\sqrt{2}-1}{3-\sqrt{8}}-\frac{\sqrt{2}+1}{3+\sqrt{8}}\)
\(=\frac{\left(\sqrt{2}-1\right)\left(3+\sqrt{8}\right)}{\left(3-\sqrt{8}\right)\left(3+\sqrt{8}\right)}-\frac{\left(\sqrt{2}+1\right)\left(3-\sqrt{8}\right)}{\left(3+\sqrt{8}\right)\left(3-\sqrt{8}\right)}\)
\(=\left(3\sqrt{2}+\sqrt{16}-3-\sqrt{8}\right)-\left(3\sqrt{2}-\sqrt{16}+3-\sqrt{8}\right)\)
\(=3\sqrt{2}+4-3-\sqrt{8}-3\sqrt{2}+4-3+\sqrt{8}\)
\(=8-6=2\)là số tự nhiên
b)
)\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
= \(\frac{2}{2-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\)
=\(\frac{2\left(2+\sqrt{5}\right)-2\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)
=\(\frac{4+2\sqrt{5}-4+2\sqrt{5}}{2^2-\sqrt{5}^2}\)
=\(\frac{4\sqrt{5}}{4-5}\)
=\(\frac{4\sqrt{5}}{-1}\)
\(-4\sqrt{5}\)
Bài 2:
\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)
Với mọi \(n\inℕ^∗\)ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)
\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)
Bài 1: chắc lại phải "liên hợp" gì đó rồi:V
\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)
Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)
Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)
Với \(n\ge3\). Lời giải xin mời các bạn:)
<\(\frac{1}{3}\) nha các bn , mong mn giúp mk