Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\)
\(=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)
mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)
=>\(M\le\frac{3}{2}\)
dấu = xảy ra <=> a=b=c
đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=P\)
phương pháp khảo sát hàm đặc trưng rất hữu hiệu cho những bài bất đẳng thức đối xứng
bài toán cho f(x)+f(y)-f(z) >= A
tìm min, max của S-g(x)+g(y)+g(z)
*nháp
điều kiện x,y,z thuộc D, dự đoán dấu bằng xảy ra khi x=y=z=\(\alpha\). Khảo sát hàm đặc trưng h(t)-g(t)-mf(t) với m=\(\frac{g'\left(\alpha\right)}{f'\left(\alpha\right)}\)sau khi đã tìm được m chỉ cần xét đạo hàm h(t) nữa là xong
ta khảo sát hàm \(f\left(x\right)=\sqrt{x^2+\frac{1}{x^2}}-mx\)
để hàm số có cực tiểu thì f(x)=0 \(\Leftrightarrow\frac{x^4-1}{x^3\sqrt{x^2+\frac{1}{x^2}}}-m=0\)nhận thấy "=" ở x=\(\frac{1}{3}\)nên m=\(\frac{80}{-\sqrt{82}}\)
xét hàm số đại diện f(t)=\(\sqrt{t^2+\frac{1}{t^2}}-\frac{80}{\sqrt{82}}t\)trên (0;1) có f(t)\(\ge f\left(\frac{1}{3}\right)=\frac{162}{3\sqrt{82}}\)
vậy thì \(P\ge-\frac{80}{\sqrt{82}}\left(x+y+z\right)+\frac{162}{\sqrt{82}}=\sqrt{82}\)
bài toán được chứng minh xong
\(\left(x+5\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-4\end{cases}}}\)
vậy x=-5 và x=-4
b) dễ tự làm
c)\(|x+9|-3=5\)
\(|x+9|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+9=2\\x+9=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-7\\x=7\end{cases}}}\)
vậy x=-7 hoặc x=7
1/3 công 2/5= 5/15 cộng với 6/15=11/15
NẾU ĐÚNG CHO MÌNH ĐÚNG NHÉ.
NẾU SAI CHO MÌNH SAI. CẢM ƠN CÁC BẠN. THANK
bn lên mạng hoặc vào câu hỏi tương tự nha!
chúc bn hok tốt!
hahaha!
#conmeo#
Vì a,b,c,d có vai trò như nhau
Giả sử \(a\ge b\ge c\ge d\)
=>\(a^2\ge b^2\ge c^2\ge d^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\le\frac{1}{d^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\le\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}+\frac{1}{d^2}\)
=>\(1\le4.\frac{1}{d^2}\)
=>\(\frac{1}{4}\le\frac{1}{d^2}\)
=>\(4\ge d^2\)
=>\(2\ge d\)
Vì d là số tự nhiên khác 0
=>d=1,2
-Xét d=1
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{1^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+1=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=0\)
Vì\(\frac{1}{a^2}>0,\frac{1}{b^2}>0,\frac{1}{c^2}>0=>\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>0\)
=>Vô lí
-Xét d=2
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{2^2}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{4}=1\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
Vì \(a\ge b\ge c\)
=>\(a^2\ge b^2\ge c^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\le\frac{1}{c^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}\)
=>\(\frac{3}{4}\le3.\frac{1}{c^2}\)
=>\(\frac{1}{4}\le\frac{1}{c^2}\)
=>\(4\ge c^2\)
=>\(2\ge c\)
Vì \(c\ge d=>c\ge2\)
=>c=2
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{2^2}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{4}=\frac{3}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)
Vì \(a\ge b\)
=>\(a^2\ge b^2\)
=>\(\frac{1}{a^2}\le\frac{1}{b^2}\)
=>\(\frac{1}{a^2}+\frac{1}{b^2}\le\frac{1}{b^2}+\frac{1}{b^2}\)
=>\(\frac{2}{4}\le\frac{2}{b^2}\)
=>\(\frac{1}{4}\le\frac{1}{b^2}\)
=>\(4\ge b^2\)
=>\(2\ge b\)
Vì \(b\ge c=>b\ge2\)
=>b=2
=>\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{2}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{2^2}=\frac{2}{4}\)
=>\(\frac{1}{a^2}+\frac{1}{4}=\frac{2}{4}\)
=>\(\frac{1}{a^2}=\frac{1}{4}\)
=>\(a^2=4=>a=2\)
Vậy a=2,b=2,c=2,d=2