\(\frac{1995.1994-1}{1993.1995+1994}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

ta có : 1/y = x/4 - 1/2 = ( x+2)/4 <=> y = 4/(x - 2)

Để x, y nguyên nên ta có : x-2 ϵ Ư(4) = { -1 , 1 ,-2,2-4,4}

x-2=1=>x=3=>y=4

x-2=-1=>x=1=>y=-4

x-2=-2=>x=0=>y=0

x-2=2=>x=4=>y=2

x-2=-4=>x=-2=>y=-1

x-2=4=>x=6=>y=1

vay cac cap so nguyen( x,y) la :(3,4),(1,-4),(0,0),(4,2),(-2,-1),(6,1)

x4

 

12

1 

 

26 tháng 3 2018

\(a)\) \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)

\(A=1-\frac{1}{2^9}\)

\(A=\frac{2^9-1}{2^9}\)

Vậy \(A=\frac{2^9-1}{2^9}\)

Chúc bạn học tốt ~ 

26 tháng 6 2017

Nhanh nha mai nộp rùi

12 tháng 4 2018

* Ta có : 

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}=\frac{4a-2+3}{2a-1}=\frac{4a-2}{2a-1}+\frac{3}{2a-1}=\frac{2\left(2a-1\right)}{2a-1}+\frac{3}{2a-1}=2+\frac{3}{2a-1}\)

Để P là số nguyên thì \(\frac{3}{2a-1}\) phải là số nguyên hay \(3⋮\left(2a-1\right)\)\(\Rightarrow\)\(\left(2a-1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(2a-1\)\(1\)\(-1\)\(3\)\(-3\)
\(a\)\(1\)\(0\)\(2\)\(-1\)

Vậy \(a\in\left\{-1;0;1;2\right\}\) thì P là số nguyên 

Chúc bạn học tốt ~ 

12 tháng 4 2018

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}\)

để \(P\in Z\) thì \(a\in Z\) 

27 tháng 6 2018

* x/7 = -6/21

=> x = -6.7 : 21

=> x = -2

* x/-2 = -8/x

=> x.x = -8.(-2) = 16

=> x^2 = 16

=> x = 4 hoặc x = -4

27 tháng 6 2018

\(\frac{-2}{7}\)\(\frac{-6}{21}\)

\(\frac{4}{-2}\)\(\frac{-8}{4}\)

Học tốt ^-^

17 tháng 2 2017

Em cứ lấy máy tính bấm bài 1 đi là đc

21 tháng 2 2017

Mình không hiểu đề bạn ạ!

Chúc bạn may mắn......mình chính là Đào Minh Tiến!

21 tháng 2 2017

\(\frac{a}{b}\)=\(\frac{1}{5}\)