
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(\dfrac{1991.1993-1}{1990+1991.1992}\)
\(=\dfrac{1991\left(1992+1\right)-1}{1991.1992+1990}\)
\(=\dfrac{1991.1992+1991.1-1}{1991.1992+1990}\)
\(=\dfrac{1991.1992+1991-1}{1991.1992+1990}\)
\(=\dfrac{1991.1992+1990}{1991.1992+1990}=1\)
Vậy giá trị của biểu thức là \(1\)

Đặt A = 1-1/2+1/3-1/4 +...+1/1989-1/1990
A= (1+1/3+1/5 +...+1/1989)- ( 1/2 + 1/4 +....+1/1990 )
A=(1+1/3+1/5 +...+1/1989) - 2(1/2+1/4+1/6+.....+1/1990)
A= (1+1/3+1/5 +...+1/1989)- (1+1/2+1/3+1/4 +...+1/995)
A= 1/996+1/997 +.....+1/1990 =VP (đpcm)
Chúc các bạn thành công :)
Có điều gì sai các bạn bẩu mình nha :)
A=

lấy máy tính tính 2 vế
xong thay x vào để thỏa mãn điều kiện
hok tốt
Ta có :
\(\frac{1}{5}+\frac{2}{30}+\frac{121}{165}\le x\le\frac{1}{2}+\frac{156}{72}+\frac{1}{3}\)
\(\Leftrightarrow\)\(\frac{3}{15}+\frac{1}{15}+\frac{11}{15}\le x\le\frac{3}{6}+\frac{13}{6}+\frac{2}{6}\)
\(\Leftrightarrow\)\(\frac{15}{15}\le x\le\frac{18}{6}\)
\(\Leftrightarrow\)\(1\le x\le3\)
\(\Rightarrow\)\(x\in\left\{1;2;3\right\}\)
Vậy \(x\in\left\{1;2;3\right\}\)
Chúc bạn học tốt ~

(1 - 1/7) x (1 - 2/7) x ............(1 - 10/7)
= 6/7 x 5/7 x ..... x -3/7
=6/7 x 5/7x 4/7 x 3/7x 2/7 x 1/7 x 0 x -1/7x -2/7 x -3/7
=0
nhớ tk cho mình nha

Ta có :
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(B=1-\frac{1}{2^{2016}}\)
\(B=\frac{2^{2016}-1}{2^{2016}}< 1\)
Vậy \(B< 1\)
Chúc bạn học tốt ~
Ta có: 2B=1+1/2+1/2^2+...+1/2^2015
2B-B=(1+1/2+1/2^2+...+1/2^2015)-(1/2+1/2^2+1/2^3+...+1/2^2016)
B=1-1/2^2015<1
Vậy B<1

a) \(\left(\frac{1}{243}\right)^9=\left(\frac{1}{3^5}\right)^9=\frac{1}{3^{45}}\)
\(\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{81}\right)^{13}=\left(\frac{1}{3^4}\right)^{13}=\frac{1}{3^{52}}< \frac{1}{3^{45}}=\left(\frac{1}{243}\right)^9\Rightarrow\left(\frac{1}{83}\right)^{13}< \left(\frac{1}{243}\right)^9\)
b) 199010 + 19909
= 19909 ( 1990 + 1 )
= 19909 . 1991 < 199110 = 19919 . 1991
Vậy 199010 + 19909 < 199110

\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{101}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{101}+\frac{1}{102}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{102}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{101}+\frac{1}{102}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{51}\)
\(=\frac{1}{52}+\frac{1}{53}+\frac{1}{54}+...+\frac{1}{102}\)
\(=VP\)
Trả lời:
\(\frac{1991.1993-1}{1990+1991.1992}\)
\(=\frac{1991.\left(1992+1\right)-1}{1990+1991.1992}\)
\(=\frac{1991.1992+1991.1-1}{1991.1992+1990}\)
\(=\frac{1991.1992+1991-1}{1991.1992+1990}\)
\(=\frac{1991.1992+1990}{1991.1992+1990}\)
\(=1\)
Kết luận bằng 1