\(\frac{1}{6}\)x\(\frac{1}{3}\)+\(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2017

\(\frac{1}{6}.\frac{1}{3}+\frac{17}{6}.\frac{1}{3}+\frac{2015}{2016}-1\)

\(=\frac{1}{3}\left(\frac{1}{6}+\frac{17}{6}\right)+\frac{2015}{2016}-1\)

\(=\frac{1}{3}.3+\frac{2015}{2016}-1\)

\(=1-1+\frac{2015}{2016}=\frac{2015}{2016}\)

\(\frac{1}{6}\times\frac{1}{3}+\frac{17}{6}\times\frac{1}{3}+\frac{2015}{2016}-1\)

\(=\left(\frac{1}{6}+\frac{17}{6}\right)\times\frac{1}{3}+\frac{2015}{2016}-1\)

\(=3\times\frac{1}{3}+\frac{2015}{2016}-1\)

\(=1+\frac{2015}{2016}-1\)

\(=0+\frac{2015}{2016}=\frac{2015}{2016}\)

22 tháng 10 2017

a, 6/9+5/7+1/3=2/3+5/7+1/3=5/7+1=12/7

b, 17/7+6/5-20/14=17/7+6/5-10/7=6/5+1=11/5

c,2/5x1/4+3/4x2/5=2/5x(1/4+3/4)=2/5x1=2/5

d, 6/11:4/6+5/11:2/3=6/11:2/3+5/11:2/3=(6/11+5/11):2/3=3/2

nha

23 tháng 7 2016

\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times...\times\left(1-\frac{1}{2015}\right)\times\left(1-\frac{1}{2016}\right)\)

\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{2014}{2015}\times\frac{2015}{2016}\)

\(=\frac{1}{2016}\)

23 tháng 7 2016

Giải : Ta có                (1-1/2)*(1-1/3)*(1-1/4)*....*(1-1/2015)*(1-1/2016)  

                                = 1* -(1/2+1/3+1/4+....+1/2015+1/2016)

                                = 1* - (1/2+1/2016 +1/3+1/2015 +...+1/1007)

                                = 1* -(1/2033134)

                                = -1/2033134

\(\left(a\right)\frac{34-x}{30}=\frac{5}{6}\)

\(\frac{34-x}{30}=\frac{25}{30}\)

34 - x = 25

x = 34 - 25 = 9

\(\left(b\right)\frac{x+13}{34}=\frac{12}{17}\)

\(\frac{x+13}{34}=\frac{24}{34}\)

x + 13 = 24

x = 24 - 13 = 11

\(\left(c\right)\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{9}\right)+\left(x+\frac{1}{27}\right)+\left(x+\frac{1}{81}\right)=\frac{56}{81}\)

\(4x+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)

Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

Ta có : \(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}\)

\(2A=1-\frac{1}{81}=\frac{80}{81}\)

\(A=\frac{80}{81}\div2=\frac{40}{81}\)

\(\Rightarrow4x+\frac{40}{81}=\frac{56}{81}\)

\(4x=\frac{56}{81}-\frac{40}{81}\)

\(4x=\frac{16}{81}\)

\(x=\frac{16}{81}\div4=\frac{4}{81}\)

9 tháng 8 2020

a, \(\frac{34-x}{30}=\frac{5}{6}\Leftrightarrow\frac{34-x}{30}=\frac{25}{30}\)

\(\Leftrightarrow34-x=25\Leftrightarrow x=9\)

b, \(\frac{x+13}{34}=\frac{12}{17}\Leftrightarrow\frac{x+13}{34}=\frac{24}{34}\)

\(\Leftrightarrow x+13=24\Leftrightarrow x=11\)

6 tháng 8 2017

Sửa đề \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+..+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}\div2\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4032}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\Leftrightarrow\frac{1}{x+1}=\frac{1}{4032}\)

\(\Leftrightarrow x+1=4032\Rightarrow x=4031\)

18 tháng 5 2020

 Heo ơi

Heo

30 tháng 7 2018

\(\frac{23}{12}\)

\(\frac{314}{105}\)

\(\frac{59}{60}\)

\(\frac{199}{90}\)

\(\frac{1}{18}\)

\(\frac{13}{36}\)

\(\frac{4}{221}\)

\(\frac{4}{85}\)

30 tháng 7 2018

phải giải thích đày đủ