\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{24}+\frac{1}{48}+\frac{1}{28}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{24}+\frac{1}{48}+\frac{1}{28}\)

=> \(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)+\left(\frac{1}{24}+\frac{1}{48}\right)+\frac{1}{28}\)

=> \(\left(\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)+\left(\frac{2}{48}+\frac{1}{48}\right)+\frac{1}{28}\)

=> \(\frac{7}{16}+\frac{3}{48}+\frac{1}{28}\)

=> \(\frac{1}{2}+\frac{1}{28}=>\frac{14}{28}+\frac{1}{28}=\frac{15}{28}\)

29 tháng 7 2019

đúng 100%

29 tháng 7 2019

\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{28}\)

=> \(\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}+\frac{1}{28}\)

=> \(\frac{31}{64}+\frac{1}{28}=>\frac{217}{448}+\frac{16}{448}=\frac{233}{448}\)

29 tháng 7 2019

đúng 100%

a: \(=\left(-\dfrac{25}{140}+\dfrac{245}{140}+\dfrac{32}{140}\right)\cdot\dfrac{-69}{20}\)

\(=\dfrac{252}{140}\cdot\dfrac{-69}{20}\)

\(=\dfrac{9}{5}\cdot\dfrac{-69}{20}=\dfrac{-621}{100}\)

b: \(=\left(6-2-\dfrac{4}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}=\dfrac{18}{5}\)

c: \(=\left(\dfrac{2}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{34}{24}\cdot\dfrac{-8}{17}=\dfrac{-1}{3}\cdot2=-\dfrac{2}{3}\)

26 tháng 4 2019

A=1/8+1/24+1/48+1/80+1/120+1/168+1/224=>2A=2/8+2/24+2/48+2/80+2/120+2/168+2/224

2A=2/2*4+2/4*6+2/6*8+2/8*10+2/10*12+2/12*14+2/14*16

2A=1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12+1/12-1/14+1/14-1/16

2A=1/2-1/16

2A=7/16

A=7/16:2

A=7/32

22 tháng 2 2017

a) Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

. . .

\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\cdot\frac{99}{50}=\frac{99}{200}< \frac{100}{200}=\frac{1}{2}\left(đpcm\right)\)

b) Ta có :

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)

\(\Rightarrow1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{2500}>48\)

\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\)

Lại có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

. . .

\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1\)

\(\Rightarrow-\left(\frac{1}{2^2}+...=\frac{1}{50^2}\right)>1\)

\(\Rightarrow49-\left(\frac{1}{2^2}+...+\frac{1}{50^2}\right)>49-1=48\)

hay \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}>48\left(đpcm\right)\)

23 tháng 6 2017

\(A=\frac{8}{9}\cdot\frac{15}{16}\cdot\frac{24}{25}\cdot...\cdot\frac{360}{361}\cdot\frac{399}{400}\)

\(A=\frac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot18\cdot20\cdot19\cdot21}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot19\cdot19\cdot20\cdot20}\)

\(A=\frac{2\cdot21}{3\cdot20}\)

\(A=\frac{7}{10}\)

\(B=\frac{9}{8}\cdot\frac{16}{15}\cdot\frac{25}{24}\cdot...\cdot\frac{441}{440}\cdot\frac{484}{483}\)

\(B=\frac{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot21\cdot21\cdot22\cdot22}{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot20\cdot22\cdot21\cdot23}\)

\(B=\frac{3\cdot22}{2\cdot23}=\frac{33}{23}\)

\(C=\frac{17}{23}.\left(\frac{7}{61}+\frac{28}{61}+\frac{26}{61}\right)\)

\(C=\frac{17}{23}\cdot1=\frac{17}{23}\)

25 tháng 2 2018

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

TA có :\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1=2\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\left(đpcm\right)\)