\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2007}{2009}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2015

\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2007}{2009}\)

\(\frac{1\times2}{3\times2}+\frac{1\times2}{6\times2}+...+\frac{1\times2}{x\times\left(x+1\right)}=\frac{2007}{2009}\)

(\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}\))\(\times\)2=\(\frac{2007}{2009}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)=\(\frac{2007}{2009}\div2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)

\(\frac{1}{x+1}=\frac{1}{2009}\)

suy ra x+1=2009

x=2009-1

x=2008

vậy x=2008

28 tháng 4 2017

Ta có :

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{2007}{2009}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{4018}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2007}{4018}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2009}\)

\(\Rightarrow x+1=2009\)

\(\Rightarrow x=2009-1\)

\(\Rightarrow x=2008\)

28 tháng 4 2017

X = 2008

28 tháng 4 2017

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\)\(2.\)(\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\)\(2.\)(\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\)\(2.\)(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2007}{2009}\)

\(\Rightarrow\)(\(\frac{1}{2}-\frac{1}{x+1}\))\(=\frac{2007}{2009}:2\)

\(\Rightarrow\frac{-1}{x+1}=\frac{2007}{4018}-\frac{1}{2}\)

\(\Rightarrow\frac{-1}{x+1}=\frac{-1}{4018}\Rightarrow x+1=4018\Rightarrow x=4017\)

5 tháng 4 2018

\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{2}{x\left(x+1\right)}=1\frac{2007}{2009}\)

=> \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

=> \(1-\frac{2}{x+1}=\frac{2007}{2009}\)

=> \(\frac{2}{x+1}=\frac{2}{2009}\)   =>  x + 1 = 2009 => x = 2008

6 tháng 8 2015

a. nhân cả hai vế của đẳng thức với 1/ 10 ta có

x/10 - (2/11.13 +2/13.15+...+2/53.55)=3/11 . 1/10

x/10 - (1/11-1/13+1/13-1/15 +...+1/53-1/55) =3/110

x/10 - (1/11 - 1/55) =3/110

x/10 -4/55 = 3/110

x/10=3/110 + 4/55

x. 1/10 =1/10

x= 1/10 : 1/10 =1

b) bạn nhân cả hai vế của đẳng thức với 1/2 rồi làm tương tự

 

1 tháng 7 2018

a. nhân cả hai vế của đẳng thức với \(\frac{1}{10}\). Ta có:

\(\frac{x}{10}-\left(\frac{2}{11.13}+\frac{2}{13.15}+...\frac{2}{53.55}\right)=\frac{3}{11}.\frac{1}{10}\)

\(\frac{x}{10}-\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{110}\)

\(\frac{x}{10}-\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{110}\)

\(\frac{x}{10}-\frac{-4}{55}=\frac{3}{110}\)

\(\frac{x}{10}=\frac{3}{110}+\frac{4}{55}\)

\(x.\frac{1}{10}=\frac{1}{10}\)

\(x=\frac{1}{10}:\frac{1}{10}=1\)

b. cũng thế bạn nhân hai vế của đẳng thức với \(\frac{1}{2}\) rồi làm tương tự.

14 tháng 7 2016

b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)

Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)

14 tháng 7 2016

a./

\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)

Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)

(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

20 tháng 4 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)

\(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2007}{2009}\)

\(2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)

\(2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)

\(1-\frac{2}{x+1}=\frac{2007}{2009}\)

\(\frac{2}{x+1}=1-\frac{2007}{2009}\)

\(\frac{2}{x+1}=\frac{2}{2009}\)

\(\Rightarrow x+1=2009\Leftrightarrow x=2008\)