Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7/4.x+3/2=-4/5
7/4.x=-4/5-3/2
7/4.x=-23/10
x=-23/10:7/4
x=-46/35
vậy x=-46/35
1/4+3/4.x=3/4
1.x=3/4
x=3/4:1
x=3/4
vậy x=3/4
x.(1/4+1/5)-(1/7+1/8)=0
x.9/20-15/56=0
x.51/280=0
x=0:51/280
x=0
vậy x=0
3/35-(3/5+x)=2/7
(3/5+x)=3/35-2/7
(3/35+x)=-1/5
x=-1/5-3/5
x=-4/5
vậy x=-4/5
\(a,1\frac{3}{4}.x+1\frac{1}{2}=\frac{4}{5}\)
\(\frac{7}{4}.x=\frac{4}{5}-\frac{3}{2}\)
\(\frac{7}{4}.x=\frac{-7}{10}\)
\(x=\frac{-7}{10}:\frac{7}{4}\)
\(x=\frac{-2}{5}\)
\(b,\frac{1}{4}+\frac{3}{4}.x=\frac{3}{4}\)
\(\frac{3}{4}.x=\frac{3}{4}-\frac{1}{4}\)
\(\frac{3}{4}.x=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{3}{4}\)
\(x=\frac{2}{3}\)
\(c,x.\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
\(x.\frac{9}{20}-\frac{15}{56}=0\)
\(x.\frac{9}{20}=\frac{15}{56}\)
\(x=\frac{15}{56}:\frac{9}{20}\)
\(x=\frac{25}{42}\)
\(d,\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
\(\frac{3}{5}+x=\frac{3}{35}-\frac{2}{7}\)
\(\frac{3}{5}+x=\frac{-1}{5}\)
\(x=\frac{-1}{5}-\frac{3}{5}\)
\(x=\frac{-4}{5}\)
Học tốt
giúp mik vs, mik bik các pạn giờ này đang ngủ rùi nhưng giúp mik lần này thui.yêu các pạn nhìu
\(5\frac{1}{2}+\left(-3\right)=\frac{11}{2}+\frac{-3}{1}\)\(=\frac{11}{2}+\frac{-6}{2}=\frac{5}{2}\)\(;\)
\(4\frac{9}{11}+\left(-2\frac{1}{11}\right)=\frac{53}{11}+\frac{-23}{11}\)\(=\frac{30}{11}\)\(;\)
\(2\frac{1}{2}+\left(-6\right)=\frac{5}{2}+\frac{-6}{1}\)\(=\frac{5}{2}+\frac{-12}{2}=\frac{-7}{2}\)\(;\)
\(\left(-\frac{4}{5}\right)+\frac{1}{2}=\frac{-4}{5}+\frac{1}{2}\)\(=\frac{-8}{10}+\frac{5}{10}=\frac{-3}{10}\)\(;\)
\(4,3-\left(-1,2\right)=4,3+1,2=5,5\)\(=\frac{55}{10}=\frac{11}{2}\)\(;\)
\(0-\left(-0,4\right)=0+0,4=0,4\)\(=\frac{4}{10}=\frac{2}{5}\)\(;\)
\(\frac{-2}{3}-\frac{-1}{3}=\frac{-2}{3}+\frac{1}{3}=\frac{-1}{3}\)\(;\)
\(\frac{-1}{2}-\frac{-1}{6}=\frac{-1}{2}+\frac{1}{6}\)\(=\frac{-3}{6}+\frac{1}{6}=\frac{-2}{6}=\frac{-1}{3}\)\(;\)
\(x+\frac{1}{3}=\frac{3}{4}\) \(;\) \(x-\frac{2}{5}=\frac{5}{7}\) \(;\)
\(x=\frac{3}{4}-\frac{1}{3}\) \(x=\frac{5}{7}+\frac{2}{5}\)
\(x=\frac{5}{12}\) \(x=\frac{39}{35}\)
\(-x-\frac{2}{3}=-\frac{6}{7}\) \(;\) \(\frac{4}{7}-x=\frac{1}{3}\)
\(\frac{6}{7}-\frac{2}{3}=x\) \(\frac{4}{7}-\frac{1}{3}=x\)
\(\frac{4}{21}=x\) \(\Leftrightarrow\)\(x=\frac{4}{21}\) \(\frac{5}{21}=x\)\(\Leftrightarrow\)\(x=\frac{5}{12}\)
1. \(\frac{x+1}{x+5}=\frac{x+3}{x+2}\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+1\right)x+\left(x+1\right).2=\left(x+3\right)x+\left(x+3\right).5\)
\(\Leftrightarrow x^2+x+2x+2=x^2+3x+5x+15\)
\(\Leftrightarrow x^2+3x+2=x^2+8x+15\)
\(\Leftrightarrow x^2+3x-x^2-8x=15-2\)
\(\Leftrightarrow-5x=13\)
\(\Leftrightarrow x=\frac{-13}{5}\)
Vậy ...
\(A=\frac{99}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+..+\frac{1}{99.100}\right)\)
\(A=\frac{99}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{99}{100}-\frac{99}{100}\)
\(A=\frac{99-99}{100}=0\)
Bài 2
\(\left(3x+5\right).\left(2x-4\right)=0\)
\(TH1:3x+5=0\)
\(3x=-5\)
\(x=-\frac{5}{3}\)
\(TH2:2x-4=0\)
\(2x=4\)
\(x=2\)
\(\left(x^2-1\right).\left(x+3\right)=0\)
\(\Rightarrow x^2-1=0\)
\(x^2=1\)
\(\Rightarrow x=1\)
\(x+3=0\)
\(x=-3\)
\(5x^2-\frac{1}{2}x=0\)
\(\Rightarrow5x^2-\frac{x}{2}=0\)
\(\Rightarrow5x^2=\frac{5x^2}{1}=\frac{5x^2.2}{2}\)
\(10x^2-x=x.\left(10x-1\right)\)
\(\frac{x.\left(10x-1\right)}{2}=0\)
\(\frac{x.\left(10x-1\right)}{2}.2=0.2\)
\(10x-1=0\)
\(x=\frac{1}{10}=0.100\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{10}=0.100\\x=0\end{cases}}\)
\(\frac{x}{4}-\frac{1}{2}=\frac{3}{4}\)
\(\frac{x}{4}=\frac{3}{4}+\frac{1}{2}\)
\(\frac{x}{4}=\frac{5}{4}\)
\(\Rightarrow x=5\)
\(\frac{1}{8}+\frac{7}{8}:x=\frac{3}{4}\)
\(\frac{7}{8}:x=\frac{3}{4}-\frac{1}{8}\)
\(x=\frac{7}{8}:\frac{5}{8}\)
\(x=\frac{56}{40}=\frac{28}{20}=\frac{14}{10}=\frac{7}{5}\)
1/2x+5/2=7/2x-3/4
7/2x-1/2x=5/2+3/4
3x=13/4
x=13/12
\(\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x=-\frac{3}{4}-\frac{5}{2}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=\frac{13}{12}\)
Vậy \(x=\frac{13}{12}\).