Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(k\in R\)ta có:
\(P+k=\frac{\left(kx^2-8x+k+6\right)}{\left(x^2+1\right)}\)
Với k = -8 thì:
\(P-8=\frac{\left[-2.\left(2x+1\right)^2\right]}{\left(x^2+1\right)}\le0\)
\(\Rightarrow P\le8\)
\(\Rightarrow Max_P=8\)khi \(x=-\frac{1}{2}\)
\(P+2=\frac{\left[2.\left(x-2\right)^2\right]}{x^2+1}\ge0\)
\(\Rightarrow P\ge2\)
\(\Rightarrow Min_A=-2\)khi \(x=2\)
\(P=\frac{6x-8}{x^2+1}\)
\(\Leftrightarrow Px^2+P=6x-8\)
\(\Leftrightarrow Px^2+P-6x+8=0\)
\(\Leftrightarrow Px^2-6x+\left(P+8\right)=0\)(1)
Để PT (1) có nghiệm \(\Leftrightarrow\left(-6\right)^2-4P\left(P+8\right)\ge0\Leftrightarrow36-4P^2-32P\ge0\)
\(\Leftrightarrow9-P^2-8P\ge0\Leftrightarrow\left(-P-9\right)\left(P-1\right)\ge0\Leftrightarrow-9\le P\le1\)
Vậy P có giá trị nhỏ nhất là - 9 \(\Leftrightarrow-9x^2-6x-1=0\Rightarrow x=-\frac{1}{3}\)\
Vậy P có giá trị lớn nhất là 1 \(x^2-6x+9=0\Rightarrow x=3\)
tự làm đi đừng ai giúp nhé lần này lại gặp mi nữa rồi
x4-x2+7
=(x2)2-2.x2.1/2+1/4+27/4
=(x2-1/4)2+27/4\(\ge\)27/4 ( vì (x2-1/4)2\(\ge\)27/4)
dấu "=" xảy ra khi:
x2-1/4=0
<=>(x-1/2)(x+1/2)=0
<=>x-1/2=0 hoặc x+1/2=0
<=>x=1/2 hoặc x=-1/2
vậy GTNN của x4+x2+7 là 27/4 tại x=1/2 hoặc x=-1/2
1/
\(3^{x+2}-3^x=216\)
<=> \(3^x\left(9-1\right)=216\)
<=> \(3^x.8=216\)
<=> \(3^x=27\)
<=> \(x=3\)
2/
\(A=2\left(x-1\right)^2+y^2+2018\)
Ta có \(\left(x-1\right)^2\ge0\)với mọi giá trị của x. Dấu "=" xảy ra khi và chỉ khi \(x-1=0\)<=> \(x=1\)
=> \(2\left(x-1\right)^2\ge0\)với mọi giá trị của x. Dấu "=" xảy ra khi và chỉ khi \(x=1\)
và \(y^2\ge0\)với mọi giá trị của y. Dấu "=" xảy ra khi và chỉ khi \(y=0\)
=> \(2\left(x-1\right)^2+y^2\ge0\)với mọi cặp giá trị của (x; y). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
=> \(2\left(x-1\right)^2+y^2+2018\ge2018\)với mọi cặp giá trị của (x; y). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy GTNN của A là 2018 khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
\(B=\frac{-2}{\left(x+1\right)^2+2019}\)
Ta có \(\left(x+1\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(x+1=0\)<=> \(x=-1\)
=> \(\left(x+1\right)^2+2019\ge2019\). Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
=> \(\frac{-2}{\left(x+1\right)^2+2019}\ge\frac{-2}{2019}\). Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
Vậy GTNN của B là \(-\frac{2}{2019}\)khi \(x=-1\)
đặt A=x^2+y^2-x+6x+15
=x^2+y^2+5x+15
=(x^2+5x)+y^2+15
=(x^2+2x.2,5^2+2,5^2)+y^2+15-2,5^2
=(x+2,5)^2+y^2+35/4 >/ 35/4
vậy Min A=35/4 <=> x+2,5=0=> x=-5/2 ,y^2=0=> y=0
...
=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)
=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)
=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)
=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Vì1/2(x-y)2 luôn lớn hơn hoặc bằng 0 với mọi x , y
suy ra 1/2 (x - y )2 luôn lớn hơn bằng 0 với mọi x , y
suy ra 1/2 (x-y)2 + 2 luôn lớn hơn bằng 0+2=2 với mọi x , y
vậy giá trị nhỏ nhất của biểu thức trên là 2