K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Vì1/2(x-y)2 luôn lớn hơn hoặc bằng 0 với mọi x , y

suy ra 1/2 (x - y )luôn lớn hơn bằng 0 với mọi x , y

suy ra 1/2 (x-y)+ 2 luôn lớn hơn bằng 0+2=2 với mọi x , y

vậy giá trị nhỏ nhất của biểu thức trên là 2 

27 tháng 12 2016

2.GTLN:4

1.x=-5

18 tháng 12 2017

Với \(k\in R\)ta có:

\(P+k=\frac{\left(kx^2-8x+k+6\right)}{\left(x^2+1\right)}\)

Với k = -8 thì:

\(P-8=\frac{\left[-2.\left(2x+1\right)^2\right]}{\left(x^2+1\right)}\le0\)

\(\Rightarrow P\le8\)

\(\Rightarrow Max_P=8\)khi \(x=-\frac{1}{2}\)

\(P+2=\frac{\left[2.\left(x-2\right)^2\right]}{x^2+1}\ge0\)

\(\Rightarrow P\ge2\)

\(\Rightarrow Min_A=-2\)khi \(x=2\)

18 tháng 12 2017

\(P=\frac{6x-8}{x^2+1}\)

\(\Leftrightarrow Px^2+P=6x-8\)

\(\Leftrightarrow Px^2+P-6x+8=0\)

\(\Leftrightarrow Px^2-6x+\left(P+8\right)=0\)(1)

Để PT (1) có nghiệm \(\Leftrightarrow\left(-6\right)^2-4P\left(P+8\right)\ge0\Leftrightarrow36-4P^2-32P\ge0\)

\(\Leftrightarrow9-P^2-8P\ge0\Leftrightarrow\left(-P-9\right)\left(P-1\right)\ge0\Leftrightarrow-9\le P\le1\)

Vậy P có giá trị nhỏ nhất là - 9 \(\Leftrightarrow-9x^2-6x-1=0\Rightarrow x=-\frac{1}{3}\)\

Vậy P có giá trị lớn nhất là 1 \(x^2-6x+9=0\Rightarrow x=3\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

22 tháng 8 2016

xích mích à

22 tháng 8 2016

tự làm đi đừng ai giúp nhé lần này lại gặp mi nữa rồi

6 tháng 7 2015

x4-x2+7

=(x2)2-2.x2.1/2+1/4+27/4

=(x2-1/4)2+27/4\(\ge\)27/4 ( vì (x2-1/4)2\(\ge\)27/4)

dấu "=" xảy ra khi:

x2-1/4=0

<=>(x-1/2)(x+1/2)=0

<=>x-1/2=0 hoặc x+1/2=0

<=>x=1/2 hoặc x=-1/2

vậy GTNN của x4+x2+7 là 27/4 tại x=1/2 hoặc x=-1/2

5 tháng 8 2018

1/

\(3^{x+2}-3^x=216\)

<=> \(3^x\left(9-1\right)=216\)

<=> \(3^x.8=216\)

<=> \(3^x=27\)

<=> \(x=3\)

2/

\(A=2\left(x-1\right)^2+y^2+2018\)

Ta có \(\left(x-1\right)^2\ge0\)với mọi giá trị của x. Dấu "=" xảy ra khi và chỉ khi \(x-1=0\)<=> \(x=1\)

=> \(2\left(x-1\right)^2\ge0\)với mọi giá trị của x. Dấu "=" xảy ra khi và chỉ khi \(x=1\)

và \(y^2\ge0\)với mọi giá trị của y. Dấu "=" xảy ra khi và chỉ khi \(y=0\)

=> \(2\left(x-1\right)^2+y^2\ge0\)với mọi cặp giá trị của (x; y). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)

=> \(2\left(x-1\right)^2+y^2+2018\ge2018\)với mọi cặp giá trị của (x; y). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)

Vậy GTNN của A là 2018 khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)

\(B=\frac{-2}{\left(x+1\right)^2+2019}\)

Ta có \(\left(x+1\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(x+1=0\)<=> \(x=-1\)

=> \(\left(x+1\right)^2+2019\ge2019\). Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

=> \(\frac{-2}{\left(x+1\right)^2+2019}\ge\frac{-2}{2019}\). Dấu "=" xảy ra khi và chỉ khi \(x=-1\)

Vậy GTNN của B là \(-\frac{2}{2019}\)khi \(x=-1\)

5 tháng 8 2018

Bài 1 : Tìm x : 

3^x+2 - 3^x = 216 

<=> 3^x . 3^2 - 3^x . 1 = 216 

<=> 3^x . 9  - 3^x . 1 = 216 

<=> 3^x . ( 9 - 1 ) = 216

<=> 3^x . 8 = 216

<=> 3^x = 216 : 8 

<=> 3^x = 27 

<=> 3^x = 3^3

=> x = 3

Vậy x = 3 

1 tháng 1 2016

đặt A=x^2+y^2-x+6x+15

=x^2+y^2+5x+15

=(x^2+5x)+y^2+15

=(x^2+2x.2,5^2+2,5^2)+y^2+15-2,5^2

=(x+2,5)^2+y^2+35/4 >/ 35/4

vậy Min A=35/4 <=> x+2,5=0=> x=-5/2 ,y^2=0=> y=0

 

29 tháng 12 2016

...

=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)

=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)

=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

29 tháng 12 2016

Dáp số =0

HD