Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* ĐK: \(x\ne0\)
Đề ra ...<=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{9}\)
<=> \(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
<=> \(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{6}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{x+1}\left(1-\frac{1}{x}\right)=\frac{1}{6}-\frac{1}{9}\)
<=> \(\frac{x-1}{x\left(x+1\right)}=\frac{1}{36}\)
<=> \(\frac{x-1}{x\left(x-1\right)}=\frac{x-1}{36.\left(x-1\right)}\)
=> x(x-1) = 36. (x-1) => x =36
\(\frac{2}{2}.\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x+\left(x+1\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2}{9}\)
\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
x+1=18
x=18-1
x=17
Ta có: \(x-\frac{20}{11\cdot13}-\frac{20}{13\cdot15}-...-\frac{20}{53\cdot55}=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\left(\frac{2}{11\cdot13}+\frac{2}{13\cdot15}+...+\frac{2}{53\cdot55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-10\cdot\frac{4}{55}=\frac{3}{11}\)
\(\Leftrightarrow x-\frac{8}{11}=\frac{3}{11}\)
\(\Leftrightarrow x=\frac{3}{11}+\frac{8}{11}\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)thỏa mãn đề.
1/21 + 1/28 + 1/36 + ... + 2/x(x + 1) = 2/9
1/2 × (1/21 + 1/28 + 1/36 + ... + 2/x(x + 1) = 1/2 × 2/9
1/42 + 1/56 + 1/72 + ... + 1/x(x + 1) = 1/9
1/6×7 + 1/7×8 + 1/8×9 + ... + 1/x(x + 1) = 1/9
1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + ... + 1/x - 1/x + 1 = 1/9
1/6 - 1/x + 1 = 1/9
1/x + 1 = 1/6 - 1/9
1/x + 1 = 3/18 - 2/18
1/x + 1 = 1/18
=> x + 1 = 18
=> x = 18 - 1
=> x = 17
A) \(\frac{1}{2}\cdot\left(\frac{2}{9}+\frac{3}{7}-\frac{5}{27}\right)\)
\(=\frac{1}{2}\cdot\frac{1}{2}\)
\(=\frac{1}{4}\)
B) \(\left(\frac{-5}{28}+1.75+\frac{8}{35}\right):\left(-3\frac{9}{20}\right)\)
\(=\left(\frac{-5}{28}+\frac{7}{4}+\frac{8}{35}\right):\frac{-69}{20}\)
\(=\frac{14}{5}:\frac{-69}{20}\)
\(=\frac{-56}{69}\)
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{3.7}+\frac{1}{4.7}+\frac{1}{4.9}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{2.3.7}+\frac{2}{2.4.7}+\frac{2}{2.4.9}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6}-\frac{2}{7}+\frac{2}{7}-\frac{2}{8}+....+\frac{2}{x}-\frac{2}{x+1}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{6}-\frac{2}{x+1}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{6}-\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{3}-\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{3}{9}-\frac{2}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{18}\)
\(\Rightarrow x+1=18\)
\(\Rightarrow x=17\)
câu a khó quá.Để nghĩ.
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow\frac{2}{21\cdot2}+\frac{2}{28\cdot2}+\frac{2}{36\cdot2}+.....+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Rightarrow2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Rightarrow\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+....+\frac{1}{x\left(x-1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{x-5}{6x+6}=\frac{1}{9}\)
\(\Rightarrow9\left(x-5\right)=6x+6\)
\(\Rightarrow9x-45=6x+6\)
\(\Rightarrow9x-6x=51\)
\(\Rightarrow3x=51\)
Tới đây bí:v
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{1}{2}\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{2}{9}\cdot\frac{1}{2}\)
\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
\(x=18-1\)
\(x=17\)
sửa đề số cuối vế trái là \(\frac{1}{x\left(x+1\right)}\)
Đặt A là vế trái
\(\frac{1}{2}A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\)
\(=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}\)
\(=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\)
\(=\frac{1}{6}-\frac{1}{x+1}\)
\(\Rightarrow A=\frac{1}{3}-\frac{2}{x+1}=\frac{2}{9}\)
\(\frac{2}{x+1}=\frac{1}{3}-\frac{2}{9}=\frac{1}{9}=\frac{2}{18}\)
\(\Rightarrow x+1=18\Rightarrow x=17\)
Vậy x=17