\(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+........+\frac{1}{\sqrt{2001}+\sqrt{200...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Ta có:

\(\frac{1}{\sqrt{n}+\sqrt{n+4}}=\frac{\sqrt{n+4}-\sqrt{n}}{4}\)

Áp dụng vào bài toán được

\(\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{1}{4}\left(\sqrt{5}-\sqrt{1}+\sqrt{9}-\sqrt{5}+...+\sqrt{2005}-\sqrt{2001}\right)\)

\(=\frac{1}{4}\left(\sqrt{2005}-1\right)\)

11 tháng 7 2017

\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+...+\sqrt{2005}-\sqrt{2001}\)

\(=\sqrt{2005}-1\)

12 tháng 7 2017

sai rồi Thắng Nguyễn ơi

2 tháng 10 2018

\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}.\)

\(\Rightarrow A^2=4+\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{2}}\right)\left(4-\sqrt{10+2\sqrt{2}}\right)}+4-\sqrt{10+2\sqrt{5}}\)

          \(=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

          \(=8+2\sqrt{6-2\sqrt{5}}\)

          \(=8+2\sqrt{5-2\sqrt{5.1}+1}=8+2\left(\sqrt{5}-1\right)\)

           \(=8+2\sqrt{5}-2=6+2\sqrt{5}\)

          \(=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

\(B=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

    \(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=-\frac{1}{4}\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+....+\sqrt{2001}-\sqrt{2005}\right)\)

\(=-\frac{1}{4}\left(1-\sqrt{2005}\right)\)

\(=10,94430659\)

\(\text{Lm hơi vắn tắt thông cảm nha!!}\)

8 tháng 7 2016

\(P=\frac{\sqrt{5}-1}{5-1}+\frac{\sqrt{9}-\sqrt{5}}{9-5}+...+\frac{\sqrt{2005}-\sqrt{2001}}{2005-2001}=\frac{-1+\sqrt{2005}}{4}\)

28 tháng 5 2018

\(Q=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

=> \(Q=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+\frac{\sqrt{9}-\sqrt{13}}{-4}+...+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

=> \(Q=-\frac{1}{4}.\left(1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}\right)\)

=> \(Q=-\frac{1}{4}.\left(1-\sqrt{2005}\right)\)

=> \(Q=\frac{\sqrt{2005}-1}{4}\)

6 tháng 6 2017

\(P=\frac{1}{\sqrt{1}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{\sqrt{5}-\sqrt{1}}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+...+\frac{\sqrt{2005}-\sqrt{2001}}{4}\)

\(=\frac{\sqrt{2005}-\sqrt{1}}{4}=\frac{\sqrt{2005}-1}{4}\)

30 tháng 10 2019

1. Trục căn thức ở mẫu:

\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)

=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)

\(=\frac{\sqrt{2009}-1}{4}\)

2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)

\(=6+3x\)

=> \(x^3-3x=6\)

=> \(B=x^3-3x+2000=6+2000=2006\)

30 tháng 10 2019

\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)

28 tháng 7 2016

Bài 2:

\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)

\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)

\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(=\frac{1-\sqrt{2005}}{-4}\)

\(=\frac{\sqrt{2005}-1}{4}\)