Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ở tử số ta làm thế này
\(TS=\left(1+\frac{1}{2014}\right)+\left(1+\frac{1}{2013}\right)+\left(1+\frac{1}{2012}\right)+...+\left(1+\frac{2013}{2}\right)\)
\(TS=2015\left(\frac{1}{2014}+\frac{1}{2013}+\frac{1}{2012}+...+\frac{1}{2}\right)\)
\(\frac{TS}{MS}=2015\)
chứng minh \(\frac{3}{2}\ge\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\)
ta có \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{2x}{1+x^2}\le1\)
\(\left(y-1\right)^2\ge0\Leftrightarrow y^2+1\ge2y\Leftrightarrow\frac{2y}{1+y^2}\le1\)
\(\left(z-1\right)^2\ge0\Leftrightarrow z^2+1\ge2z\Leftrightarrow\frac{2z}{1+z^2}\le1\)
\(\Rightarrow\frac{2x}{1+x^2}+\frac{2y}{1+y^2}+\frac{2x}{1+z^2}\le3\Leftrightarrow\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\)
chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{2}\)
áp dụng bất đẳng thức Cauchy ta có:
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge3\sqrt[3]{\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=\frac{3}{\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
ta lại có \(\frac{\left(1+x\right)\left(1+y\right)\left(1+z\right)}{3}\ge\sqrt[3]{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{\frac{\left(1+x\right)+\left(1+y\right)+\left(1+z\right)}{3}}=\frac{3}{2}\)
kết hợp ta có \(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
Nhận xét :
Quy luật :
Mẫu là a thì số số hạng có mẫu a là a - 1
Mẫu là 2 thì có 1 SH là 1/2
Mẫu là 3 thì có 3 - 1 = 2 số hạng là 1/3 và 2/3
<=> Ta có :
1 + 2 + 3 + ... + 10 = 55
Vậy số hạng thứ 60 thuộc dãy số có mẫu là 12 vì số 1 tương ứng với dãy \(M_2\),số 2 tương ứng với dãy \(M_3\)
=> Số 10 tương ứng với dãy \(M_{11}\)
Các số tiếp theo sau dãy \(M_{11}\):
\(M_{11};M_{12}=\frac{1}{11};\frac{2}{11};....;\frac{10}{11};\left(\frac{1}{12};\frac{2}{12};\frac{3}{12};\frac{4}{12};\frac{5}{12}\right);.....\)
Số hạng thứ 60 là số 5/12
:V toán lp 3 cơ ak
A = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4347}\)
\(A\cdot3=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}\)
\(A\cdot3-A=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4347}\right)\)
\(A\cdot2=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}-\frac{1}{2}-\frac{1}{6}-\frac{1}{18}-...-\frac{1}{4347}\)
\(A\cdot2=\frac{3}{2}-\frac{1}{4347}\)
\(A\cdot2=\frac{13039}{8694}\)
\(A=\frac{13039}{8694}:2\)
\(A=\frac{13039}{17388}\)
Kết quả hơi lớn nên kiểm tra lại đề :))
hình như cái đề saisai sao ấy bạn ak ??????
tk tui nha
mơn mọi người nhiều lắm !!!!!!!!
ta có:
lỗi sai là 10kgx10kg=\(100kg^2\)chứ ko phài =1 tạ (=100kg)
tương tự:
\(\frac{1}{10}\)tạ \(\times\frac{1}{10}\)tạ=\(\frac{1}{100}\)\(tạ^2\)chứ không phải = \(\frac{1}{100}\)tạ
\(\frac{1}{1}+\frac{1}{1}=2.\)
Đúng 100% luôn!
Ai tk cho mình mình tk lại.
1/1+1/1=2 nhé