Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{97.100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\cdot\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\cdot\frac{99}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow x=\frac{0,33\times100}{0,33}=100\)
\(A=\frac{2}{3}\left[\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right]\)
\(A=\frac{2}{3}\left[\left[\frac{1}{1}-\frac{1}{4}\right]+\left[\frac{1}{4}-\frac{1}{7}\right]+...+\left[\frac{1}{97}-\frac{1}{100}\right]\right]\)
\(A=\frac{2}{3}\left[\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right]\)
\(A=\frac{2}{3}\left[1-\frac{1}{100}\right]=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
AI THẤY ĐÚNG ỦNG HỘ MIK NHÉ
1/3.A=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{97.100}\)
=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{97}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
=>A=\(\frac{99}{100}:\frac{1}{3}\)
=\(\frac{297}{100}\)
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(A=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=3.\left(1-\frac{1}{100}\right)\)
\(A=3.\frac{99}{100}=\frac{297}{100}\)
Các bạn chọn đúng cho mình nhé!
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+..........+\frac{2}{97.100}=\frac{3}{2}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........-\frac{1}{100}\right)\)
\(=\frac{3}{2}\times\frac{99}{100}=\frac{297}{200}\)
A = \(\frac{3^2}{1\cdot4}+\frac{3^2}{4\cdot7}+\frac{3^2}{7\cdot10}+\frac{3^2}{10\cdot13}+\frac{3^2}{13\cdot16}+...+\frac{3^2}{97\cdot100}\)
A : 3 = \(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}+...+\frac{3}{97\cdot100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{97}-\frac{1}{100}\)
A : 3 = \(\frac{1}{1}-\frac{1}{100}\)
A : 3 = \(\frac{99}{100}\)
A = \(\frac{297}{100}\)
\(A=\frac{1}{1.4}+\frac{1}{2.7}+...+\frac{1}{67.70}\)
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{67.70}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{70}\)
\(3A=1-\frac{1}{70}=\frac{69}{70}\)
\(A=\frac{69}{70}:3=\frac{23}{70}\)
vì \(\frac{23}{70}< 1\)
nên \(\frac{1}{1.4}+\frac{1}{4.7}+...+\frac{1}{67.70}< 1\)
#)Giải :
\(\frac{91}{1.4}+\frac{91}{4.7}+\frac{91}{7.11}+...+\frac{91}{88.91}\)
\(=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.11}+...+\frac{3}{88.91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{88}-\frac{1}{91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{91}\right)\)
\(=\frac{91}{3}.\frac{90}{91}=30\left(đpcm\right)\)
#~Will~be~Pens~#
\(\frac{91}{1\cdot4}+\frac{91}{4\cdot7}+...+\frac{91}{88\cdot91}=\frac{1}{3}\left(91-\frac{91}{4}+\frac{91}{4}-\frac{91}{7}+...-\frac{91}{91}\right)\)
\(=\frac{1}{3}\left(91-1\right)=\frac{1}{3}\cdot90=30\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{100}\right)=\frac{1}{3}\left(\frac{99}{100}\right)=\frac{33}{100}\)
33/100 nha ban that do