Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/1.2 + 1/2.3 +1/3.4 +......+1/998.999 + 1/999. 1000
= 1/2 + 1/6 + 1/12 + .... + 1/997002 + 1/999000
lại có : 1/2 = 1-1/2
1/6 = 1/2 -1/3
1/12 = 1/3 - 1/4
...
1/997002 = 1/998 - 1/999
1/999000 = 1/999 - 1000
=>1/1.2 + 1/2.3 +1/3.4 +......+1/998.999 + 1/999. 1000
= 1-1/2 + 1/2 - 1/3 + 1/3 -1/4 +....+ 1/998 - 1/999 + 1/999 - 1/1000
= 1-1/1000
= 999/1000
= 1-1/2+1/2-1/3+1/3-1/4 + ... -1/999+1/999-1/1000 +1
= 1 - 1/1000 + 1
= 1000/1001
Tk hộ mình nhé
#)Giải :
Đặt \(A=4-\frac{2}{1.2}-\frac{2}{2.3}-\frac{2}{3.4}-...-\frac{2}{99.100}\)
\(A=4-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)
\(A=4-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=4-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=4-2\left(1-\frac{1}{100}\right)\)
\(A=4-2\times\frac{99}{100}\)
\(A=4-\frac{99}{50}\)
\(A=\frac{101}{50}\)
1/1x2+1/2x3+1/3x4+...+1/99x100+1
1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100 +1
=1- 1/100 +1
=99/100 +1
=199/100
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/999.1000 + 1
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/999 - 1/1000 + 1
= 1 - 1/1000 + 1
= 2 - 1/1000
= 2000/1000 - 1/1000
= 1999/1000
Ủng hộ mk nha ♡_♡☆_☆
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot10-x=10\)10
\(\left(1-\frac{1}{10}\right)\cdot10-10=x\)
\(x=10\cdot\left(1-\frac{1}{10}-1\right)\)
\(x=10\cdot-\frac{1}{10}=-1\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right).10-x=10\)
\(\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right].10-x=10\)
\(\left[1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\right].10-x=10\)
\(\left[1-\frac{1}{10}\right].10-x=10\)
\(\frac{9}{10}.10-x=10\)
\(9-x=10\)
\(x=9-10\)
\(x=-1\)
~ Hok tốt ~
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)
b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(=2\left(1-\frac{1}{2019}\right)\)
\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=2.\frac{2018}{2019}\)
\(=\frac{4036}{2019}\)
Phần c tương tự nha
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + .......+ \(\frac{1}{2017.2018}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + .......+ \(\frac{1}{2017}\) - \(\frac{1}{2018}\)
= 1 - \(\frac{1}{2018}\) = \(\frac{2017}{2018}\)
câu a) mik sửa đề một tí ko biết có đúng ko
câu b , c tương tự nhưng cần lấy tử ra chung
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}+1\)
\(=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+...+\frac{1000-999}{999\cdot1000}+1\)
\(=\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}-\frac{2}{2\cdot3}+...+\frac{1000}{999\cdot1000}-\frac{999}{999\cdot1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{999}{1000}+1\)
\(=\frac{1999}{1000}\)