Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh:
\(\frac{1}{1-3a}\ge256a^3\)
\(\Leftrightarrow\left(4x-1\right)^2\left(48x^2+8x+1\right)\ge0\)đúng
\(\Rightarrow VT\ge256a^3+256b^3+256c^3=\frac{256.3}{64}=12\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)
Câu 1: Đặt \(S=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}=\frac{x}{\sqrt{\left(1-x\right)\left(x+1\right)}}+\frac{y}{\sqrt{\left(1-y\right)\left(y+1\right)}}\)
\(\frac{S}{\sqrt{3}}=\frac{x}{\sqrt{\left(3-3x\right)\left(x+1\right)}}+\frac{y}{\sqrt{\left(3-3y\right)\left(y+1\right)}}\)
Áp dụng BĐT AM-GM: \(\sqrt{\left(3-3x\right)\left(x+1\right)}\le\frac{3-3x+x+1}{2}=\frac{4-2x}{2}=2-x\)
\(\Rightarrow\frac{x}{\sqrt{\left(3-3x\right)\left(x+1\right)}}\ge\frac{x}{2-x}\)
Tương tự: \(\frac{y}{\sqrt{\left(3-3y\right)\left(y+1\right)}}\ge\frac{y}{2-y}\)
Từ đó: \(\frac{S}{\sqrt{3}}\ge\frac{x}{2-x}+\frac{y}{2-y}=\frac{x^2}{2x-x^2}+\frac{y^2}{2y-y^2}\)
Áp dụng BĐT Schwarz: \(\frac{S}{\sqrt{3}}\ge\frac{x^2}{2x-x^2}+\frac{y^2}{2y-y^2}\ge\frac{\left(x+y\right)^2}{2\left(x+y\right)-\left(x^2+y^2\right)}=\frac{1}{2-\left(x^2+y^2\right)}\)
Áp dụng BĐT \(\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{S}{\sqrt{3}}\ge\frac{1}{2-\frac{1}{2}}=\frac{2}{3}\Leftrightarrow S\ge\frac{2\sqrt{3}}{3}=\frac{2}{\sqrt{3}}\)(ĐPCM).
Dấu bằng có <=> \(x=y=\frac{1}{2}\).
Câu 4: Sửa đề CMR: \(abcd\le\frac{1}{81}\)
Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}=3\)
\(\Leftrightarrow\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)
\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)(AM-GM)
Tương tự:
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)\(;\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân 4 BĐT trên theo vế thì có:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)
\(=81.\frac{abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)
\(\Rightarrow81.abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)(ĐPCM)
Dấu "=" có <=> \(a=b=c=d=\frac{1}{3}\).
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
1
con