K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2016

\(\frac{11}{80}=\frac{x^4\left(x-1\right)\left(x+1\right)}{x^{10}+x^9+....+x+1}?\)

26 tháng 4 2020

\(a,\frac{x+2}{6}-\frac{8x+1}{3}=\frac{2-5x}{2}-6\)

\(\Leftrightarrow\frac{x+2}{6}-\frac{\left(8x+1\right)2}{6}=\frac{\left(2-5x\right)3}{6}-\frac{36}{6}\)

=> x + 2 - 16x - 2 = 6 - 15x - 36

<=> x - 16x + 15x = 6 -36 + 2 - 2

<=> 0x = -30

Phương trình vô ngiệm

b, 11 - ( x + 2) = 3(x + 1)

<=> 11 - x - 2= 3x + 3

<=> -x - 3x = 3 - 11 + 2

<=> -4x = -6

<=> x = \(\frac{3}{2}\) 

C,  tương tự a

26 tháng 4 2020

c) ĐKXĐ: x \(\ne\)0 và x \(\ne\)-1

Ta có: \(\frac{x+3}{x+1}+\frac{x+2}{x}=2\)

=> \(x\left(x+3\right)+\left(x+1\right)\left(x+2\right)=2x\left(x+1\right)\)

<=> x2 + 3x + x2 + 3x + 2 = 2x2 + 2x

<=> 2x2 + 6x + 2 - 2x2 - 2x = 0

<=> 4x + 2 = 0

<=> 4x = -2

<=> x = -1/2 (tm)

Vậy S = {-1/2}

9 tháng 2 2020

\(ĐKXĐ:x\ne3;x\ne5;x\ne4;x\ne6\)

\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)

\(\Rightarrow\frac{x}{x-3}-\frac{x}{x-5}-\frac{x}{x-4}+\frac{x}{x-6}=0\)

\(\Rightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}=0\left(1\right)\end{cases}}\)

\(\left(1\right)\Rightarrow\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-5}+\frac{1}{x-4}\)

\(\Rightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-5\right)\left(x-4\right)}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\left(tm\right)\\\left(x-3\right)\left(x-6\right)=\left(x-5\right)\left(x-4\right)\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow x^2-9x+18=x^2-9x+20\)

\(\Leftrightarrow0=2\left(L\right)\)

Vậy pt có 2 nghiệm \(\left\{0;\frac{9}{2}\right\}\)

1 tháng 4 2020

a) Đk: x \(\ne\)-2

Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)

<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10

<=> -4x - 8 = 5x + 10

<=> -4x - 5x = 10 + 8

<=> -9x = 18

<=> x = -2 (ktm)

=> pt vô nghiệm

b) Đk: x \(\ne\)2; x \(\ne\)-3

Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)

<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)

<=> x + 3 - 6x + 12 = -5

<=> -5x = -5 - 15

<=> -5x = -20

<=> x = 4 

vậy S = {4}

c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11

Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)

<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)

<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)

<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)

<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)

Vậy S = {0}

18 tháng 3 2020

\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)

18 tháng 3 2020

\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)

\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)

5 tháng 6 2015

đỡ hơn chưa??? mong các bn giúp mình vs

 

5 tháng 6 2015

Vê trái: 

\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)

\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)

Vế phải:

\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)

\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)

\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải

=> đpcm

 

11 tháng 7 2019

\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)

\(\Rightarrow\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)

\(\Rightarrow\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)

\(\Rightarrow\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)

\(\Rightarrow x\left(x-8+x-11-x+9-x+10\right)=0\)

\(\Rightarrow x.0=0\)

Vậy x thỏa mãn với mọi giá trị.

Câu còn lại bn lm tương tự nhé........ 

11 tháng 7 2019

DKXD: x khác 3;4;5;6

\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)

\(\Leftrightarrow\frac{x^2-5x-x^2+3x}{\left(x-3\right).\left(x-5\right)}-\frac{x^2-6x-x^2+4x}{\left(x-4\right).\left(x-6\right)}=0\)

\(\Leftrightarrow\frac{2x}{\left(x-4\right).\left(x-6\right)}-\frac{2x}{\left(x-3\right).\left(x-5\right)}=0\)

\(\Leftrightarrow2x.\left(\frac{\left(x-3\right).\left(x-5\right)-\left(x-4\right).\left(x-6\right)}{\left(x-4\right).\left(x-6\right).\left(x-3\right).\left(x-5\right)}\right)=0\)

\(\Leftrightarrow2x.\left(\frac{2x-9}{\left(x-4\right).\left(x-5\right).\left(x-3\right).\left(x-6\right)}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{2}\end{cases}}}\)

Vậy x=0 hoặc x=9/2