\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}=?\)

giải chi tiết cho...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015

26 tháng 7 2016

1/1+2  +  1/+1+2+3  +  ...  + 1/1+2+3+...+2014

= 1/(1+2).2:2  +  1/(1+3).3:2  +   ...  + 1/(1 + 2014).2014:2

= 2/2.3  +  2/3.4  +  ...  + 2/2014.2015

= 2.(1/2.3  +  1/3.4  +  ...  + 1/2014.2015)

= 2.(1/2  -  1/3  +  1/3  -  1/4  +  ... + 1/2014  -  1/2015)

= 2.(1/2 - 1/2015)

= 2.1/2 - 2.1/2015

= 1 - 2/2015

= 2013/2015

14 tháng 3 2020

Ta có: 

\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)

\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)

\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)

\(=5^{10}-1\)

=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)

Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)

\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)

\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)

=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)

\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)

=> A > B.

9 tháng 4 2017

 \(\frac{1}{2^2}>\frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(....\)

\(\frac{1}{2015^2}>\frac{1}{2014.2015}=\frac{1}{2014}-\frac{1}{2015}\)

nên \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2015^2}>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\)

\(=1-\frac{1}{2005}\)

vì \(1-\frac{1}{2005}< 1\)

=> ĐPCM

3 tháng 4 2017

\(\frac{1}{2}\)của \(\frac{1}{2}\)là :  \(\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\)

\(\frac{1}{4}:\frac{1}{2}\)\(=\frac{1}{4}\cdot\frac{2}{1}=\frac{1}{2}\)

Vậy bạn An nói đúng

3 tháng 4 2017
An nói đúng tk nha
14 tháng 3 2020

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

\(A=\frac{2^{100}-1}{2^{100}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

hok tốt!!

19 tháng 3 2016

Bạn viết thêm số thứ 3 ở đầu dãy thì mới biết quy luật của dãy để tính chứ. Viết 2 số thế kia ai tính được :D

19 tháng 3 2016

Bạn chỉ viết 2 số ở đầu dãy thì ko thể biết được quy luật của dãy. Bạn cần cho thêm 1 số nữa mới giải được chi tiết nhé!

27 tháng 1 2016

em moi hoc lop 5 thoi

27 tháng 1 2016

\(\frac{7}{3}\)