Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..............+\frac{1}{3^{100}}\)
\(3G=1+\frac{1}{3}+\frac{1}{3^2}+...............+\frac{1}{3^{99}}\)
\(3G-G=\left(1+\frac{1}{3}+\frac{1}{3^2}+..........+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...............+\frac{1}{3^{100}}\right)\)
\(2G=1-\frac{1}{3^{100}}\)
\(\Rightarrow G=\left(1-\frac{1}{3^{100}}\right):2\)
\(\frac{2}{x}+\frac{1}{12}=\frac{3}{10}\)
\(\frac{2}{x}=\frac{3}{10}-\frac{1}{12}=\frac{13}{60}\)
\(13x=2\cdot60\)
\(13x=120\)
\(x=\frac{120}{13}\)
\(\frac{2}{x}+\frac{1}{12}=\frac{3}{10}\)
\(\Rightarrow\frac{2}{x}=\frac{3}{10}-\frac{1}{12}=\frac{13}{60}\)
\(\Rightarrow120=13x\)
\(\Rightarrow x=\frac{120}{13}\)
\(x-40\%x=3,6\)
\(\Rightarrow100\%x-40\%x=3,6\)
\(\Rightarrow60\%x=3,6\)
\(\Rightarrow\frac{60}{100}x=3,6\)
\(\Rightarrow x=6\)
\(3\frac{2}{7}x-\frac{1}{3}=-2\frac{3}{4}\)
\(\Rightarrow\frac{23}{7}x-\frac{1}{3}=-\frac{11}{4}\)
\(\Rightarrow\frac{23}{7}x=-\frac{33}{12}+\frac{4}{12}\)
\(\Rightarrow\frac{23}{7}x=\frac{29}{12}\)
\(\Rightarrow x=\frac{29}{12}:\frac{23}{7}=\frac{203}{276}\)
a.2/3 + 1/3 - x= 3/5
=> 1-x = 3/5
=> x = 1-3/5= 2/5
b. 1/8/15 - 2/3x = 0,2
=> 2/3x= 23/15 - 1/5= 4/3
=> x= 4/3 : 2/3=2
c. 2/3x -3/2x = 5/12
=> x( 2/3 - 3/2) = 5/12
=> x. -5/6 = 5/12
=> x= 5/12 : -5/6
=> x= -1/2
a) 2/3 + 1/3 - x = 3/5
=> 1 - x = 3/5
=> x = 1 - 3/5
x = 2/5
b) \(1\frac{8}{15}-\frac{2}{3}x=0,2\)
=> 23/15 - 2/3x = 0,2
=> 2/3x = 23/15 - 0,2
2/3x = 1,333333333
=>x = 1,333333333 : 2/3
x = 2
c) ???
Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)
\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Ta có đpcm
\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)
\(=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{100.101}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{100.101}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=2.\frac{99}{202}\)
\(=\frac{99}{101}\)