Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
\(=\left(-\frac{17}{18}+\frac{4}{9}\right)+\left(-\frac{5}{7}+\frac{17}{14}\right)+\frac{11}{125}\)
\(=-1+\frac{1}{2}+\frac{11}{125}\)
\(=-1+\frac{147}{125}\)
\(=\frac{22}{125}\)
2. \(1-\frac{1}{2}+2-\frac{2}{3}+3-\frac{3}{4}+4-\frac{1}{4}-3-\frac{1}{3}-2-\frac{1}{2}-1\)
\(=\left(1+2+3+4-3-2-1\right)\)\(+\left(-\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{2}{3}-\frac{1}{3}\right)+\left(-\frac{3}{4}-\frac{1}{4}\right)\)
\(=4-1-1-1\)
\(=1\)
e, \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{28}{42}:\frac{1}{28}-8\)
\(=\left(\frac{3}{14}-\frac{13}{21}+\frac{2}{3}\right):\frac{1}{28}-8\)
\(=\frac{11}{42}:\frac{1}{28}-8\)
\(=\frac{22}{3}-8\)
\(=-\frac{2}{3}\)
e, \(\frac{3}{14}:\frac{1}{28}-\frac{13}{21}:\frac{1}{28}+\frac{28}{42}:\frac{1}{28}-8\)
\(=\left(\frac{3}{14}-\frac{13}{21}+\frac{2}{3}\right):\frac{1}{28}-8\)
\(=\frac{11}{42}:\frac{1}{28}-8\)
\(=\frac{22}{3}-8\)
\(=-\frac{2}{3}\)
a)\(\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{11}{125}-\left(\dfrac{17}{18}-\dfrac{4}{9}\right)-\left(\dfrac{5}{7}-\dfrac{17}{14}\right)\)
\(=\dfrac{11}{125}-\dfrac{5}{18}-\dfrac{-7}{14}=\dfrac{11}{125}-\dfrac{5}{18}+\dfrac{1}{2}\)
\(=\dfrac{11}{125}-\left(\dfrac{5}{18}-\dfrac{1}{2}\right)=\dfrac{11}{125}-\dfrac{-4}{18}=\dfrac{11}{125}+\dfrac{2}{9}\)
a)=\(\frac{1}{9}.\frac{2}{145}-\frac{13}{3}.\frac{2}{145}+\frac{2}{145}\)
=\(\frac{2}{145}\left(\frac{1}{9}-\frac{13}{3}+1\right)\)
=\(\frac{2}{145}.\frac{-29}{9}\)
=\(\frac{-2}{45}\)
Học tốt nha!!!^^
a, 6/7 + (2/11 - 6/7) - (13/11 + 1)
= 6/7 + 2/11 - 6/7 - 13/11 - 1
= (6/7 - 6/7) - (13/11 - 2/11) - 1
= 0 - 1 - 1
= -2
a ) \(\left(-\frac{40}{51}.0,32.\frac{17}{20}\right):\frac{64}{75}\)
\(=\left(-\frac{40}{51}.\frac{8}{25}.\frac{17}{20}\right):\frac{64}{75}\)
\(=\left(\frac{-40.8.17}{51.25.20}\right):\frac{64}{75}\)
\(=\left(\frac{-16}{75}\right).\frac{75}{64}\)
\(=\frac{-1}{1}.\frac{1}{4}=-\frac{1}{4}\)