Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-4}{9}.19\frac{2}{5}+\left(\frac{-3}{2}\right)^2.\left(-14\frac{3}{5}\right)-1\)
\(=\frac{-4}{9}.\frac{97}{5}+\frac{9}{4}.\frac{-73}{5}-1\)
\(=\frac{-388}{45}+\frac{-657}{20}-1\)
\(=\frac{-1529}{36}\)
Bài 1:
a) Ta có: \(\frac{-5}{7}+\frac{2}{7}+\frac{4}{-9}+\frac{4}{9}\)
\(=-\frac{3}{7}+\frac{-4}{9}+\frac{4}{9}\)
\(=-\frac{3}{7}\)
b) Ta có: \(\left(\frac{1}{2}:\frac{3}{4}\right)^2\)
\(=\left(\frac{1}{2}\cdot\frac{4}{3}\right)^2\)
\(=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
c) Ta có: \(\frac{1}{2}+\frac{3}{4}-\left(\frac{4}{5}+\frac{3}{4}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{4}{5}-\frac{3}{4}\)
\(=\frac{1}{2}-\frac{4}{5}\)
\(=\frac{5}{10}-\frac{8}{10}=\frac{-3}{10}\)
d) Ta có: \(5^6:5^4+2^3\cdot2^2-225:15^2\)
\(=5^2+2^5-\frac{15^2}{15^2}\)
\(=25+32-1\)
\(=56\)
e) Ta có: \(\frac{7}{23}+\frac{4}{17}-\frac{7}{23}+\frac{13}{17}\)
\(=\frac{4}{17}+\frac{13}{17}\)
\(=\frac{17}{17}=1\)
g) Ta có: \(19\frac{1}{4}\cdot\frac{7}{12}-15\frac{1}{4}\cdot\frac{7}{12}\)
\(=\frac{7}{12}\left(19+\frac{1}{4}-15-\frac{1}{4}\right)\)
\(=\frac{7}{12}\cdot4=\frac{7}{3}\)
1. a) 2B = 1 + 1/2 + 1/22+...+1/298
B - B = (1+1/2+...+1/298) - (1/2+....+1/299)
B = 1 - 299 => B < 1
b) Làm tương tự như câu a, ra là (1 - 1/399) : 2 = 1/2 - 1/2.399(C bé hơh 1/2)
1. a). Theo đầu bài ta có:
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{98}+\left(\frac{1}{2}\right)^{99}\)
\(\Leftrightarrow B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)\)
\(\Leftrightarrow B=1-\frac{1}{2^{99}}< 1\)( đpcm )
\(=-2.\frac{2}{3}.\frac{1}{3}:\left(\frac{-1}{6}+0,5\right)-\left(-2009^0\right)-\left(-2\right)^2\)
\(=\frac{4}{3}.\frac{1}{3}:\left(\frac{-1}{6}+\frac{1}{2}\right)-1.4\)
\(=\frac{4}{3}.\frac{1}{3}+4\)
\(=4+4\)
\(=8\)
\(2.THPT\)
\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)
\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=9\left(1-\frac{1}{100}\right)\)
\(A=9.\frac{99}{100}\)
\(A=\frac{891}{100}\)
\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)
\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)
\(B=\frac{1}{5}-\frac{1}{95}\)
\(B=\frac{18}{95}\)
\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(D=\frac{1}{2}-\frac{1}{28}\)
\(D=\frac{13}{28}\)
\(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}.\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}-\frac{1}{3}+1\)
\(\Rightarrow-7x=\frac{-1}{6}\)
\(\Rightarrow x=\frac{1}{42}\)
Vậy ...
\(\)
\(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Rightarrow3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Rightarrow3x=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{18}\)
Vậy...
\(\frac{-9}{4}\).\(19\frac{2}{5}\)+\(\left(\frac{-3}{2}\right)^2\).\(\left(-14\frac{3}{5}\right)\)-\(\left(\frac{99}{100}\right)^0\)
=\(\frac{-9}{4}\).\(\frac{97}{5}\)+\(\frac{9}{4}\).\(\frac{-73}{5}\)-1
=\(\frac{-9}{4}\).\(\frac{97}{5}\)+\(\frac{-9}{4}\).\(\frac{73}{5}\)-1
=\(\frac{-9}{4}\).(\(\frac{97}{5}\)+\(\frac{73}{5}\))
=\(\frac{-9}{4}\).34
=\(\frac{-153}{2}\)
Học tốt