Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngữ văn ko phải toán ko giải dc với đây là toán lớp 6 nha
\(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)
\(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)
Đặt : \(F\left(x\right)=ax+b\)
Với x=1 từ (1) và (3)
\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow a+b=4\)(*)
Với x=3 từ (3) và (2)
\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)
\(\Rightarrow3a+b=14\)(**)
Từ (*) và (**)
\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)
\(\Rightarrow F\left(x\right)=ax+b=5x-1\)
T lm r, ko bt có đúng ko:))
cho \(x^2+y^2=4\)
tìm giá trị nhỏ nhất \(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)2\)
\(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
\(=x^2+y^2+\frac{2x}{y}+\frac{2y}{x}+\frac{1}{x^2}+\frac{1}{y^2}\)
\(=4+\frac{2x^2+2y^2}{xy}+\frac{x^2+y^2}{x^2y^2}\)
\(=4+\frac{8}{xy}+\frac{4}{x^2y^2}\)
\(=\left(2+\frac{2}{xy}\right)^2\ge0\)
vậy giá trị nhỏ nhất của A là 0.
Nếu phải tìm dấu bằng thì ta rút y theo x rồi thay vào pt đầu ra đc 2 nghiệm x1,x2
- Bạn ơi , bài toán này không phải toán lớp 1 đâu nha!!
- Nếu như là toán lớp 1 , thì ai cũng làm được rồi bạn ak.
Tiếng việt lớp 1 chứ bạn!!!
Đọc lại đi
Thanks( nhớ đừng tích sai tui, có tích đúng thì tích đi!!!)
6666+555-333+111+8888+88+66+44444444=